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Introduction 

Potential boxes make a basis of many microscopic models of physical objects. As many 

physical objects have three spatial measurements, but special interest represent 3-D potential 

boxes. Among such models the greatest symmetry the box spherical forms possesses. Such box is 

the natural candidate for modelling of a black hole. With various potentials and construction and 

the analysis of various models of black holes many works [1-11] are devoted questions of the 

analysis of this model and this direction intensively develops. The purpose of our work is the 

analysis of a spectrum of microparticles when their movement is relativistic and application of the 

received results to model of a black hole. 

 

The Klein-Gordon equation and power spectrum 

We use the Klein-Gordon equation [1]. As in [2] we investigate the symmetric decision. 

We enter dimensionless time and dimensionless radial coordinate by means of following formulas 

 

                                     R
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 where ,
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c
ER

 RE  characteristic energy,  h2 constant Planck, t   time, r  radial 

coordinate, R radius of a spherical potential box. Then the Klein-Gordon equation accepts the 

following initial form 
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where ,
2

RE

mc m mass of a particle in own system of readout. 

TСe НeМТsТon of tСe equatТon (βΨ on tСe FurТe’s metСoН looks lТke 

 

                                          ( ) ( )t                                                         (3) 

 

Function )(  has been set in the form corresponding to not relativistic variant of a similar 

problem, namely 
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whereA is constant and n is number of a quantum condition. 

This function automatically satisfies to a boundary condition for potential box 
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Substituting (4) in (3) and (3) in (2) we receive the equation for function ,...3,2,1,  nn  
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The decision of the equation (6) looks like 
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where
jnC  are constants, ,....3,2,1;2,1;))(()1( 2/122  njnij

jn  Therefore the power 

spectrum of a particle in spherical potential box is defined by the formula 
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                               2 2 1/2( ( ) ) , 1,2,3,...
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In a relativistic spectrum there are two branches corresponding to particles (+) and 

antiparticles (-). 

 

 Not relativistic case                                                                                          

Consider a symmetrical potential box of spherical form. Then tСe SСreНТnРer’s equatТon 

[1] looks like 
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where 
2R cmR

  . 

Under the same boundary condition the equation (9) has the decision 
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where there is a decision of a following equation 
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and the power spectrum is defined by the formula 
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Compare power spectra (8) and (12). At big numbers the relativistic power spectrum 

aspires to linear dependence on level number, and not relativistic power spectrum remains square-

law. . 

                

Power spectrum of a particle in a box and substance of a black hole 

Consider the appendix of the executed calculations to the analysis of a condition of 

substance in a black hole. As properties of area in a black hole are known hypothetically and 

possible the various points of view, suppose, that black hole there is a potential box with 

impenetrable walls and it has the sphere form. 

For radius of a black hole we use formula Laplas-Shvartzshilda [3] 
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where m  is a mass of a black hole, G is a gravitational constant. 

Entering radius of a black hole (13) in formulas for power spectra (8), (12), we receive  

 

                          

2
3

2 2 1/2(( ) ) , 1,2,3,...
2n

c n
E mc n

Gm




        ,                               (14) 

                      

2
2 2

2 , 1,2,3,...
8n R R

c n
E E n n

m m




         ,                                (15) 

 

In the resulted calculations it has supposed, that in a potential box force fields were absent. 

If in a black hole there are force fields (not including of surface) the problem can be considered a 

method of the theory of indignations.  

We yet did not mention a question on mass of particles moving in potential box. For a case 

of a black hole it is possible to assume equality of mass of such particle to mass of maximon on 

Markov or the Plank’s mass Plm . Then own energy of this particle is equal 
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and the formula for a power spectrum accepts the following form: 
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Let's estimate the second composed in brackets. As the relation of mass of a black hole to 

mass of the sun more than four [3,4], and mass of the sun about  kg10*2m 30 [4] the mass of a 

black hole satisfies an inequality .kg10*8m 30  Considering mass maximon )kg10*2m( 8
Pl

  

we receive, that the estimated composed has an order of a square of the relation of mass of 

maximon to mass of a black hole. As a result both composed become sizes of one order under a 

condition 
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On the other hand it is possible to estimate number of maximons, containing in a black 

hole. As an estimation it is used the simple formula 
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Applying the formula (19), we receive    

 

                                                       38

max
4 *10N                                                      (20) 

 

In a black hole it is a lot of maximons. Therefore it is possible to enter temperature of 

maximons. 
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 Energy and temperature of particles in a black hole 

We will propose that the maximons temperature is great enough and it is possible to use 

tСe ψoltzman’s distribution. Therefore for energy of system of maximons we have the formula 

 

                                                  
max n n

N P   ,                                                 (21) 

 

where  


)K/exp(
)K/exp(

P
n

n
n  is weight of condition,  is tСe ψoltzman’s Мonstant,  is an 

absolute temperature. The formula (21) allows to receive the equation for temperature of 

maximons and, hence, the formula for temperature in a black hole. We will pass to reception of 

this formula. Equating average energy of thermal movement of gas and average energy from 

distribution Ȼɨɥɶɰɦɚɧɚ, we receive the required formula 
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From the formula (22) follows that the temperature of maximon gas depends on mass of a 

black hole. The temperature is essential parametre for research of thermal processes in a black 

hole, including possibility of evaporation of the black holes, for the first time considered by 

Howking and gravitation waves [8-9], and also a problem of stability of black holes [5-7,10-11]. 

  

Conclusion 

The spectrum of maximonsin the spherical potential box, having radius of a black hole is 

received. The model of the black hole filled maximons is developed.   With use of discrete 

distribution of Boltzman the equation defining temperature of maximons in a black hole is 

deduced. It is shown, that this temperature depends on weight of a black hole. 
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