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We analyze the physicgirocessof gravitationalcollapseof a sphercally symmetric perfect fluid space-time
with a linear isentropic equation of state=fxp. We proposetwo models, with ansatzes (W) (t, r)/v(t,r) =
g(ryand (ii ) rv'(t, r)/v(t,r) =g(v) thatgive riseto a family of solutiors to Einstein equations with equation
of state thatewlvesfrom a regular initialdatasatisfying weak energy conditions. The model with first ansatz
leadsto homogeneous collapséhat terminatesito the formation of black hole. Westablishthat as the
parametek — 1 in the range-1/3 < k <1, the formation of bldc hole getsacceleratedn time, revealing
the significanceof equation of statdn black holeformation.

In the second model, the end state of collapsenarginally boundspacéme is investigatedin the range G<

k <1.1It is shown thatend stateof theinhomogeneous collapseulminatesinto formation of bladk hole and
neked singularity, and that solely depends on the generic regular initial data anberole played by the
pressurethrough parametek. These studiegive us deeerinsighsinto the final states of collapse with a

physically releant equation of stata the light of cosmic censorshigonjecture.
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1. Introduction

The cosmic censorship conjecture (CGG)mulatedby Penrose [1], is stated &s
singularity of gravitational collapse of a massive star devad from a regular initial
surfa@ must always be hidden behind the event horizon oftheity’ [2]. This conjecture
advocates the formation of black hole (BH) oaagainsthe formation of nakedingularity
(NS) (wherein the time of formation singularity precedes the pech of formation of
trapped surfaces). Th€CCis fundamentato the well developd theory andastrophysical
applicationsof black hole physicdoday.

The physicalattributesof the matterfield constitutinga star aredescribedby an
equation of stateput an equation of state describirglper densestatesof mattercloseto
the end stages of the collapse where the physical rdwaswiltra-high densities, energies
and pressuress not precisely known. Talescrile the collapse of a massive star, van
choose the equation of state belinearisentropic or polytropic after it losé@s equilibrium
configuration. Thegravitationalcollapse of a perfect fluid with a linear equation of state is of
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intereg from boththeoreticalas well as numerical relativity perspecties. Over the decade
many authors have shown existence of counter exampl€3C [3-9]. Recently studies
regarding gravitational lensing in the strong field limit from the perspective of cosmic censorship
have been investigated [10-11]. Further attempts are made to know whether or not nake
singularities, if at all they exist in nature, can be distinguished from black holes [12,13].

Author has studied the model | with ansatAt, r)/v(t, r) =& (r) [14] and model I
with Saraykar and Joshi, with the choice (t, r)/v(t, r) = g(v) [15] to analyze the effect
of pressure through parameter k. And further to know whéte value of k increases its
range when a BH/NSappears as collapse finalstatefor the underlying spacetime, will
the BH/NS formed sustaiits natue?lf, it is so, will the formation of BH/NS precede
in time as k— 1 ? We believe answerso these and similar issues amportant in the
understanding othe physicalapects and the rolef an equation of statein gravitational
collapse of astar.

The paper is organized as follows: In section 2, the dynamical equations qiseolla
with linear equation of state are presented. These equations are further used in understanding t
collapse of homogeneous matter field in section 3 and the corresponding apparent horizon i
discussed in subsection 3. hdspecial solutionobtained dueto ansatz (i) is used in analyzing
the inhomogeneous collapse of the cloud in sectiofh. conclusionandremarks are

specifiedin section5.

2. Collapse dynamics with linear equation of state

The general spherically symmetritetric
ds? =) dr? 1 ™) gp? +1’?2(t“,1‘)a’ﬂ2 (1)

in comoving coordinates (t, 0, ¢), descriles space-time geometryf a collapsng cloud where

dQ2 = do2 +sin? 0 dp? is the metric on @wo-sphereThestressenergy-momenturtensor
for the type | matterfields for perfect fluids in diagonal form is expressed by; Ediag|-
p, p, p, p 1 where the physical eéries p andp represeh energydensity and pressure
respectiely. The weak energycondiion gives rise to requirements>0; p + p > 0. Cloud
having perfect fluid relatioms describedhroughthe linear equation of state p{d=k p(t, r).

The Einstein field equations for the metric (1) avetten as (8tG = c = 1)[16]
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where the functions G and are definedasG(t, r) = e 2¥R2and H(t, r) = e 2VR2 and
the arbitrary function F(t,r) has aninterpretationof the massfunction for the star.On
any spacelikehypersurfacet = const, F(t,r) detemines the total mass of the star a
shell of comoving radiusr. The weakenergy conditionsestrictsF, namely by F(tr) >0,
and we lavwe F(t,0) = 0 to preserve theegularityof the modelat all the epochs [7].

We introduce a new function v(f) by v(t, r) = R(t, r)/r, and using thescaling
independence of the comovimpordinate rwe write R(t, r) = rv(t, r) [5]. In the continual
collapse of the star, weate R < 0, it specifiesthatthe physicalradius R of the collapsing
cloud keeps decreasinm time andultimately, it reaches R= 0, andit denotes spacetime
singularity,namely the shell-fcusing singularityat R = 0, where all themattershells collapse
to a vanishingphysicalradius at the epocht =ts.The mass function F(t) acts suitably at
the regular center sthat thedensity remains finite and regular there at all tini#sthe
occurrence of singular pech [7]. The Misner-Sharpmass function for the cloudan be

written in general asF(t, r) = r3M (r, v) where the function K, v) is regular and
continuouslytwice differentiable. On usingMisner-Sharpmassin equation(2), we have

- 3M+I‘|:M,I'+M,V V'] My

P= v’ (V+rv’) T ©)

We rearrangdgheterms in equation (6) and exprassas
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krM,r+ [(k+ 1)rv + V:|M, v = —3kM . @)

Let A(r,v) be a suitably differentiable function defined Agr, v), v =v' /R’.

Now solving field equations (4), we obtadft, r) = d(r) e2'A where d(r)=1+ r2 b(r)
and b(r) is at lead twice continuouslydifferentiable. Nuwv, in orderto know thenatureof
R(t, r), the field equation (5fan be expressedn theform

B=—e |l i1 (8)
R

whereG -1 = r2n(r), and sob(r) basicallycharacterizethe energydistributionfor the

collapsingshells.

3. Model I: Collapse of Homogeneous matter field
In this model, we use the function u(},asa catalystto find solution of field equation

(2) and thereafter(t, r) coordinates are being usedunderstanding theollapse of the

dense star with equation of state=gkp where ke (-1/3, 1]. Now, to obtain the general

solution of equation (7), we consider here #Hresatz [14],
v
—=&'(r (9)
;= 8()

dueto which equation (7) has a general solution offiren,

[3(c1)e(r) ]

V3k

M(ryv)=m © (10)

where np is anarbitrarypositive constat and £(r) is acontinuously differetiable function

restrained by compatibility condition and no-trapped surface condition

F(ti,r)/R(tj,r) < 1 at the beginning of the collapse, thaiows for the formation of
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trapped surfaces during the collaps®! (r,v) expressedn equation (10yepresets many

classes of solutions of equation (7) laurly those classes are physically realistic which satisfy

the energy conditions, whiare regular and whicgive p — « asv — 0.

We havwe M, (0,v)= 0 under thecondtions £(0) = const., £'(0) = 0. HereM,(0,v)= 0 is in

accordance withtherequiremehthatthe energydensity has no cuspat the center.
Integrating equation (9), we obtain(t, r) = & (N S) whereS(t) is an arbitrary

function due tointegration.Hence, the physicajuantities in(t, r) take theform
_ 3 3¢ -3k _ -3(k+1)
F(t,r)=mr’e*(r)s(t) ,p(t)—S m S(£)" (11)

and it is easyto verify thatthese equations together satisfy field equati@). At the

dynamical equilibrium eart t = tj, R(ti, r) = re5 (N S(tj) =r,, and0 < r, < r, wherer, is

the radius of the collapsing cloud. Singe> 0, we lave mp >0 with S(tj) = const.
Since the density profiles homogeneouspn integrating equation (3), and solving

equation (8), the metrictakes the form,

2 g.2 R" 2 2 2
ds? =—dt +1+r2b(r)dr +R(t,r) dQ (12)

Further,at somet =t,, r = r, which is the boundaryof the cloud whergresureis
zero, and where the interias matdedinitially with Vaidya radiatingmetric by exhibiting
thatpressure vanishes at theundary[14].

In the study of Einsteins field equations with equation of statesystenof equations
gets closed but still, weake introducedequation (9)soit needsts compatibility with the
field equations. It is found thatfor the case(r) = O, the function&(r) remainsarbitrary in
satisfying thecompatibility condion. While for the casé(r) = 0, the choice of function
£(r) is restrictedby the condition b(r) = +boe?s (") where Iy is a positie constat, thus
shrinking thedomain of the solutionset.The collapse conditioR< 0 becomesS(t) < 0. At
the singulaepocht = ts, S(t) should converge to zero ando thatdensiy would diverge

ast — ts. So, next we aimo find such S(t) satisfying all the aboveonditions.
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We integrateequation (8) using physical quantities in equation (11), and

obtain

t(r.s)=t,+ | (13)

where the variabler is treatedas a constanh. Let t, = t(0,0) be the time at which the

central shell becomesingulr. The time taken by thecentral shellto reach thesingularity
should bepostiveand finite, and hence wee the modelrealistic condition (MRC) for

ary k € (-1/3, 1] which compels us téake b(0) = — bge?S ), giving rise totherange of

S(t) as0<S(t) <[mo/bo ]I/ (1+3K) [14]. Thus the initial data of mass and dgngitofiles
is restrictedby the introductionof the equation(9) throughthe conditionb(r) = —boe?S
(") . Forb(0) =0, the MRCtakes theform S(t)>0.

Now usingh(r) = -boe?é (1) and integratingequation (13), wéave

3(k+1) 3(k+1)

H-S(t) * H

2

3m, (k+1) o

Where /| = hypergeom([1/2,K,1,[K,],b,S( )" / m),

H, = hypergeom([1/2,K,1,[K,],b,.St )" / m),

KF%,&:Z(:TTB),&:MH.

The hypergeometriceriesmentionedaboveis convergert for |boS(t)K3/mo| <1 and

1/3 < k < 1. Theconvergence condition 015 (t) augurs wellwith the MRC restriction0 <

1/(1+3Kk)

S(t) <[mo/bo ] . From abve equation, we fin&(t) <0, and thus the desired
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collapse conditionis satisfied for thedensecloud ast — ts and this indicateperpetual

gravitationalcollapseof the star.
The time taken by the central shellto reach thesingularityis given by
a(k+1)

s 2H s(t)
3\/m, (k+1)

(15)

0

The time for other collapsing shell® arrive at the singularity can be expressed ¥
ts(r) = t(r,0) and since the energy demgsihas no cusps at the singularity curve
then this givesis ts(r) = t,[14} This indicateshat time of formation ofcentralsingularty
(t = ts,r = 0) and thenon-central singularityt = ts,r = rc > 0) in theneighbourhood
of the center r = 0 is same. Clearly these evsrare simultaneous andit is understoodhatin
sweh scenario thesingularity be remaincoveredbehind the esnt horizon, thus confirming

the formation oBH asthe endstateof collapse.

3.1 Apparent horizon

For anaked singularityto come io existence thdrappedsurfaces shouldorm later,
egecially after the formation afingularity. Thus for a na&d singulariy to form we need,
t,,(r) > t, forr >0, nearr =0 wheret, is the epoch at which thecentral shell hits
the singularity [14]. When thesingularity cureis constah (x; and other higher order
terms are alvanishing),or would be decreasing, then a black hole will necessarily fasm
the collapse finaktate.

We know since the collapsing shells asenultaneous in model the end state of
collapseis boundto be a black hole but the intriguing questimthat, whais the role of
parametek of equation of staten the formation of theéblad hole.Is their a certain range

of k in which the formation of black hole wille acceleratednh time?
Since we hveb(r) = —b,e5 (N with positiveb,, therefore, we e only two cases

to study namelythatspacetimeis bound or marginally boundlhetime of occurrence of

apparentorizon in a bounded spacetimis written as
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Sah dS
Cpan =Los ~ I (16)
0 m, b
S(t)(1+3k) —b(r)

wheret,s = t, is given by equation (15) an&(tan) =San is determinedtom F/R =1. On

solving equation (16), we have

2R H
t =t -t  where t, =—32 230 (17)
bah — “bs bk bk 3(1+k)
— 1 — 2 24(ran)
and Hypqp, = hypergeom([z,Kl],[Kz ],z), z = b,ri, € h

It is clearthat t,, is a positie quartity for all k € (-1/3, 1], and thereforet,,, <

tp,s for ary r > 0, near thecenter r = 0. The collapseprogresset culminateinto the
formation oftrapped surfaces first and eventuallthe singularity forms later, leadingo

formation of BH as a final state ofcollapsefor all k ¢ (-1/3, 1]. Now, we study the

characteristicof theparametek in the formation of the BH. Iis indeed possibléo testify
whether formation ofrapped surfacesof such a star would accelerate or decelerate in
time relatie to changein parameterf equation of state.In view of these aspects the
theorem follows [14]:

Theoreml: Consider t,, = t, (K, ran), ran depends onk and 0< S,,, < () <
1. Weprove that both,, and t,, are positive deeasing timefunctionsas k — / and thatt,, > t,,
for all k €(-1/3,1]. Further t_, < t,. for anyr > 0, near the center = 0 andt,, is a
positive dereasing time functionask — 1 .

Theorem 1 holds under the conditidieat 0 < S, < S(t;) < 1 and |z < 1. These
physically realistic conditions are possible with tiag@propriatechoice of the functiorg(r)
sweh as[1 +r &' (ry,)] = 0. Clearly indicatinghat trapped surfaces are being formed first,
and the egrt of the formation olingularty is taking placeat the later time. Thus black hole
forms for all k.Further sincd,_, is a positie decreasing functiorask — 1.

Therefore, the equation of state stimulatingthe formation ofipparer horizon ofgravity

to take placeat the earlier poch and furtherstrengtheninghis characteristi@ask increases

461



Proceedings of International Conference PIRT-2015

as comparedto the usual process ébrmation of trapped surfacesin the final stages of
collapse of the sufficiently largstar,culminatingit into the black holeat the earlier time.
This process iaccelerateth time ask — 1 with the physically plausible choice of the function

§(r) [14].
In the marginally bound casbatis whenb(r) = 0, onintegrating equadtin (13), we

have

(18)

then S(t) <0 andast — ts, S(t) - —«. The Theorem 1 and resulteereoffollows for

marginally bound space-time, for details refer [14].

4. Model II: Inhomogeneous collapse

To study the sphericafjravitational collapse of a perfect fluid, weonsiderere a
linear isentropic equation of state,=pkp with 0<k <1. WehaveR(t, r) = rv(t,r), at the
initial surfacev(tj,r) = 1, and the singularsurfacet = ts, v(ts(r),r) = 0. The collapse
condition is now written asv < 0. Thetime t = ts(r) correspondsto the shell-focusing

singularityat R = 0, whereall the mattershells collapsé¢o a vanishing physicatadius. We

setr and ve|[0, 1] asindependent coordinates by performing @angormation from(r, t) to

(r,v), thus considering = t(r,v). We consideherethe ansatz [15]
rv
v _ g(V) (19)

dueto which the equation (7) has a general solution offthm,

M (r, V) = mo f(x)e_3 ») where x=re 4" (20)
¢ k
and Z(v)= ! T g0 1] dv (21)
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where np is a positie congant. The density profile for this class afiodds then takes

the form,

m_ e_BZ(V)[B f(x)+x f’(x)] |

p(r,v)= Va[<k+1)g(V)+1]

Swh a densyt profile diverges att = ts, and decreasesway from the certer r =

(22)

0, which is a physically reasonable featufer the collapsingmattercloud and thisis
p ossible throughthe appropriatechoice of functionf (x) and obtainingg(v) throughthe
compatibility condition, for details refer [15]. Theequiremen of energy condition on the
surfacev = 1 is fulfilled throughp, (r) > 0. Swch a decreasing densitof the cloud finally
becomes zerat somer =r,, and at the poch t =t,. Hence we wouldake such a value of
r = r,as the boundaryof the cloud where the energy dewsis zero, and wher¢he interior
IS matchedto a suitable exteriometric.

Existence of a solution of equation (i8)an importantquestion which is answered
through theTheorem 2. Also it is very crucial in the study of gravitational collapse that
collapsecommences from theonsingularinitial data, and this issue is addressed through the
Theorem 3 [15].

Theorem 2The general solutiorof equation (7) exists in domaiof v €(0, 1] and O<r <

r, if f(x) and g(v) are continuously differentiabfenctionsin the domain such that th,?_% g)
exists.

Theorem 3Consider the equatioof state p= kp, the mass profile F (&) = r3m (r,v) and
the density profile as in equation (22). Now,rif ' (t, r) = v(t, r)g[v(t,r)] is introduced as an

additional equationin the set of field equations then the initial data of mass function, andretie

densityis non-singularat the initial g@ocht = t;
We note, from equation(19) that g(1) = 0 and assumehatg(0)=limy—orv'/v
= ap exists and noteéhatat the initial epochg(l) =0,Z(1) =0. Solving field equations, we

can write the metricin the neighborbod ofthecenter r =0 of the cloudas,

12
ds* =— p ! dt? +%a’1‘2 +R(t,r)2 dQ’? (23)
e
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As per the ansatz (19) g(v) need not be zerageneral, forr = 0. If we assume
g(v) = 0 for r = 0, then we obtainM(0, v) = mo /v3K. This carbe obtaineddirectly also
from equation (7) byuttingr =0.We nowanalyzethe outcome of end state of collapse
in this particularcase where g(vy¥ O forr = 0 i.e. g(v) vanishes at theentral shell at
all regular points ofhespacetime.

Integratingequation (8), wdave

1 e dv
t(r,v)_t1.+£ W) o (24)
v N rt

Regularityensuresthat, in general,t(r, V) is at leastC? near thesingularty and

therefore can be expanded around dhaer as,

2

t(r,v) :t(O,V)+1‘;51 (V)+%;(2 (V)+0(1‘3)

2
where Zl(V) :%L 0. X (V): ZFZ o (25)

Now, for examinationof the natureof central singularityat R =0,r =0,
we consider the equation of outgoing radial geathdesics,given by, dt/dr=e*~”

Further,we write the nullgeodesic equationin terms of the variablegu = P R),

choosingB = 1/(1-k) [5/3 —k] for k € (0, 1), and using equation (5),ewbtain

3(1 072 _ 3(1- k)\/7( )k+1)(1(0) (26)

for k € (0, 1). The radial nullgeodesic emanating from th&ngularityin (R, u) co-ordinatesis

R = xou. Therefore,x, > 0iff x,(0) >0, and hence, (0) > 0is a sufficiert condition for the
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occurrence of the\S at the center of thecloudasthe end stateof gravitationalcollapse of

a sufficiently dense starf-urtherusing equation (24), wean obtain

7,(0)=413 m0(1_3/2) (0) (5+3k)1(5—3k) - m, (7+9k)?;) 1(571:)?;( +) 3k)(7-k)

(27)

where |= k/(k +1). Now from above equation, evclearly observe dependency ,qf0) on
the initial data of mass functionthroughthe function f, m, and the parameterk of
equation of state. Thus the signy@f0) will be decided by the initiaimassprofile of the
collapsing star and the pressure profiles expretisesughp = kp.

Now for the choice say yn=1, if f""/(0) = 1then we lwe formation ofNS whereas
f""" (0) = -1 propels formation oBH as the end state of collapse. Next, in case the collapse
begins with higheiinitial central densig through my together with "' (0) = 1 then
formation of NS takes over for higher values . This is illustrated through Fig. 1.
Wheny;, (0) = 0thenanalysigs carried outhroughy,(0). Also these results authenticated
through thestudy ofapparenhorizon [15]. When we consider=k 0, the model here reduces
to the dustcdlapse modelln the special class of dust collapsktainedhere,thefinal state
is a black hole, because with a vanishing k, we obtain a homogeneous dust collapse mode

The detail analysis and resultikereof pertainingto this agpect arepresentedin [15].
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7._,1(0) for various values of k, f"'(0)=1
5

0.08 —4/
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0.02
1O
0

0.2 0.4 0.6 08
-0.021

-0.04 ]

Fig.1The alove illustration of y;(0) indicatesthe role played by initial central
dersity throughthe mass thdunction.f”’ (0) =1 togetherwith higher initial central
densiy through n3 propelsformationof NS for all k.

5. Conclusions and Remarks

Let us summarizehe results, firstly we dve obtainedthe solution of Typ | matter
field equations throughthe ansatzsintroducedin equations (9) and (19)Cettainly, this
has ledto a special class of solutions withn isentropic equationof state p= kp that
satisfy weak energy conditions and evolvas the collapsebegins according to the
homogeneous/inhomogeneodsstributionof matter.

With the varied choices of functiog(r) in model Isatisfying physically realistic
conditions, we can styddifferert models, for egin the case ob(r) = 0 if we chooset
(r) =0, metric (12)givesusEinstein-deSittemodel with equation of state while fog =1,
&(r) =0, we hawe a closedrriedmanmodel, andso on. So, we lae a class of bound and
marginally bound space-times which cheexplored further. It is shown that how the
choice of initial data of madsincion and the physical radiutroughthe function &(r)
lead to the formationof BH.

The study ofgravitational collapse with a linear equation of statdhasrevealed
the role of theparametek in terms of formation oBH in homogeneous collapse the
range of-1/3 <k <1 and furtherstrengtheningt by accelerating the formation tapped

surfacesin time, in both the boundand marginally bound space-timess k —1.
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In model 11, in marginally boundinhomogeneousollapse withb(r) = 0, end

state of collapse leads to BH/N&bject tothechoice of regular initial data of mass

function and pressure profilés: [0, 1).

The parametevalue k= 1 depicts the case of stiff fluidtbiatthe equationof state
becomes rigid enough ) which itself ynhalt the progres®f thecollapse at some stage
[17]. Therefore our results@more significab in therange of-1/3 <k < 1.
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