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A simple Lagrangian (with squared covariant divergence of a vdetdrals a kinetic term) turned out an adequate
tool for macroscopic description of dark sector. The zero-mass field aitts dark energy. Its energy-momentum
tensor is a simple additive to the cosmological constant. Space-like and timebkése vector fields describe two
different forms of dark matter. The space-like field is attractive. It isoresple for the observed plateau in galaxy
rotation curves. The time-like massive field displays repulsive elasticityalance with dark energy and ordinary
matter it provides a four parametric diversity of regular solutionsedEthstein equations describing different possible
cosmological and oscillating nasiagular scenarios of evolution of the Universe. In particular, the singular “big bang”
turns into a regular inflation-like transition from contraction to expansitim accelerated expansion at late times.
The fine-tuned Friedman-Robertson-Walker singular solution is a particoiting case at the boundary of existence
of regular oscillating solutions (in the absence of vector fields). Thaisity of the general covariant expression for
the energy-momentum tensor allows analyzing the main propertigseotlark sector analytically, avoiding
unnecessary model assumptions. It opens a possibility to trace hawditienal attraction of the space-like dark
matter, dominating in the galaxy scale, transforms into the elastic repuldiom tihe-like dark matter, dominating
in the scale of the Universe..
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Introduction

The two most intriguing long standing problems in astrophysics (plateau in galaxy rotation
curves [1,2] and accelerated expansion of the Universe [3,4]) strictly pointed to the existence o
"hidden sector"”, containing "dark energy" and "dark matter", whose interaction with the ordinary
matter (baryons and leptons) is observed only via gravitation.

At first glance, these two problems had nothing to do with one another. The acceleratec
expansion of the Universe indicated the existence of a hidden mechanism of repulsion, while
plateau of galaxy rotation curves was the result of some additional attraction. Nevertheless, th
macroscopic approach to the dark sector problems [5], based on the analysis of vector fields i
general relativity, provided an appropriate universal tool for theoretical description of both these
phenomena. The space-like massive vector field is attractive. It is responsible for the observe
plateau in galaxy rotation curves. The time-like massive vector field displays repulsive elasticity.
In the scale of the whole Universe it is the source of accelerated expansion. Naturally, the previou

solutions of the Einstein equations, describing the expansion of the Universe filled with the
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mutually attracting matter only, inevitably contained a singularity. Inclusion of the repulsive dark
matter into consideration allows the existence of nonsingular solutions describing various possible
regular scenarios of evolution of the Universe.

My review article [5] contains the macroscopic theory of dark sector, based on the analysis
of vector fields in general relativity. The step by step derivations are accompanied by the
references to the benchmark achievements of the predecessors. The main attention was paid
clarify the validity of basing assumptions. This text of my talk contains a discussion of physical
nature of manifestations of dark sector. Analytical derivations are presented briefly only by final

results.

Regularity in General Relativity

In regular solutions of the Einstein equations all invariants of the Riemann curvature tensor
are finite. Hence, the invariants of the Ricci tenRgg are finite too. By virtue of Einstein
equations the requirement of regularity automatically excludes a possibility to achieve an infinite
value for all the invariants of the energy-momentum tefiger In General Relativity, the
distributionmotion of matter and the curvature of space-time are mutually balanced. Necessary
restrictions, if any, on the signs of existing parameters arise as a consequence of the condition «
regularity.

The requirement, that all the invariants of the Riemann curvature tensor are finite, is a

necessary condition of regularity in General Relativity.

Vector fields describing dark sector

Vector fields are widely used to describe quantum particles of the ordinary matter.
Equations for ordinary particles are easily established in accordance with the properties of thei
free motion in plane geometry. This approach is convenient for description of already known
particles. However, it does not help to describe the unknown substance of dark sector.

In general relativity, the standard approach, starting from a general form of the Lagrangian
of a vector field, is capable to describe not only the already known particles. Starting from a genere
form of the Lagrangian of a vector field in general relativity, one should derive vector field
equations and energy-momentum tensor. Then, excluding the terms associated with the ordinat
matter, one gets a chance to separate a Lagrangian describing the dark sector. dtiensafpar
the Lagrangian of dark sector is necessary, especially if the ordinary matter is considered as

continuous medium with the macroscopic energy-momentum tensor
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Otherwise, the ordinary matter would be taken into account twice: as a medium with the
energy-momentum tens@g,, ;x, and as quantum particles described by a vector field.

It turns out that the simplest Lagrangian of a vector fg|d

L =a(#) ~v(4'4,) &)

allows describing the main observed manifestations of dark sector completely within the frames

of minimal general relativity. In this case, the massless field corresponds to the dark theergy,

massive space-like fieldﬁl(¢L<O) is responsible for a plateau in galaxy rotation curves, and the

massive time-like vector fieId¢f¢L>O) displays a repulsive elasticity. The competition of
repulsive dark matter and attractive ordinary matter leads to a variety of possible regular scenaric
of evolution of the Universe. In case of Proca equations, describing ordinary particles, the termr
with covariant divergence is set to zem= 0). For this reasolhy, gets separated from a
Lagrangian of ordinary matter.

In accordance with (1) the field equations and the energy-momentum tensor are

04" ,
el @
2
7tiark[[( :gll( |:a(¢ﬂ/lj) +V:|+2V,(¢]¢1( _g1[(¢L¢L)' (3)

HereV’ = dV/d (¢"¢,). The energy-momentum tensBiy, x Of a zero-massi{ = 0)

vector field reduces to

T =& (aley")" +V(0)), (4)
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where ¢ ' = ¢" (0) is the constant divergence of a zero-mass vector ik acts in the
0 M

Einstein equations as a simple addi to the cosmological constant, changing A to

A=A-s(a(g,")’ +V(0)).

% IS the gravitational constant.
In the case of weak vector fields the second and higher derivatives of the potential

V(4" ¢,) can be neglected, and the energy-momentum tensor of a massive field is

L :a<¢;ﬂﬂj )2 ik +V0'(2¢1¢1( _gIK¢L¢L)'

In general, it is necessary to consider two independent ve¢fgrsmd ¢€"t) for a space-

like and a time-like massive fields with different potentigls (¢g) ¢(s)1<) andV (¢E{t)¢(t)K).

As far as the dark energy is taken into account bthe energy-momentum tensor of the

dark sector is the sum

7:1'arkll( = 7—ES)IK + 7'E[)IK '

In the scale of a galaxy (~ 10 kpc) the space-like vector ﬁélﬁ{<0) dominates. It is
responsible for the plateau in galaxy rotation curves. The time-like(ﬂe;igbm dominates at the
scales much larger than the distance between the galaxies, where the Universe can be conside
uniform and isotropic. The time-like field displays repulsive elasticity. Together with the dark
energy and the ordinary matter it gives rise to a variety of possible regular scenarios of evolutior
of the Universe, and rules out the problem of fine tuning. In particular, the singular “big bang”
turns into a regular inflation-like bounce with accelerated expansion at late times.

It would be interesting to trace how the additional attraction of the space-like dark matter,
dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter,

dominating in the scale of the whole Universe. Both types of massived‘!%l@dgzﬁﬁ) are active

in the intermediate region.
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The study of the structure of the Universe in the intermediate range (Mpc to hundred Mpcs)
had been initiated in the pioneering papers by Zel'dovich [6]. Continuous research by his followers
[7] shows that dark energy and dark matter significantly affect the structural dynamics of galaxies
and clusters in this range. Utilizing the energy-momentum tefsar,x in the analysis of the

large scale structure of the Universe would allow avoiding unnecessary model assumptions.

Galaxy rotation curves

The velocityV of a star, orbiting around the center of a galaxy and satisfying the balance
between the centrifugd®/r and centripetabM(r)/r? accelerations, should decrease with radius
of its orbit asV(r)~1/+r atr — o. However, numerous observed dependences V(r), named
galaxy rotation curves, practically remain constant at far periphery of a gald»ad bbeen a
fundamental problem for a long time, because General Relativity reduces tonMetory in
the limit of nonrelativistic velocities and weak gravitation.
Applying general relativity to the galaxy rotation problem it is reasonable to consider a static

centrally symmetric metric
ds*=g dx'dx" =e""(dx’)’ —e*dr* — r’dy’

It contains two metric functions v(r) and A(r) depending on only one coordinate - circular
radiusr. It is the same metric as for a Schwarzschild solution.
Real distribution of stars and planets in a galaxy is neither static, nor centrally symmetric.
However, most galaxies are concentrated around super heavy objects, be it a black hole, or
neutron star. The deviation from central symmetry, caused by peripheral stars, is small. In the
background of centrally symmetric metric the vectdr is longitudinal. Its only non-zero
component” depends on.

Omitting details (one can see a complete derivation in my review article [5]), | present here
the following analytical formula for the veloci¥(r) of a star, rotating around a black hole far

outside the Schwarzschild radiagy, :

o[, sin2mr) ¢’ 1,
v(r)= Vp{l—w}fgs—h» I Ly (5)
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“la gy - 7l |
HereV =c Ti is the plateau velocity at— oo, andm = ,/|V;/a| is the mass of

a space-like vector field. Recall that = dV /d (¢" ¢,) at¢"¢, = 0. Without dark matterd;, =
0) (5) would give the Newton®(r) ~ r~*/2 atr — co. In the presence of dark matte ¢ 0)

the velocity of rotatior (r) tends td/,; atr — co with damping oscillations.

The deviation from the Newton's law due to dark matter takes planeéagch(c/vpl)z.

2 . . . . .
At r > rSCh(C/Vpl) the curve of rotation around a black hole is a universal function, see Figure

1. In dimensionless unité/V, andx = mr there are no parameters.

/ /\A/M——m_,
[
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. 1/2
Fig. 1. Universal functior(l—stX/Zx)

Though the rotation curves of galaxies differ from one another, the deviation from the
Newton’s =1/ on the periphery of a galaxy is their common feature. In order to compare
with observations, it looks natural to choose the galaxies having stars outside the main disc. Fittin

the rotation curves of two such galaxies by the universal fungtlon sin2x/2x)~1/2 is shown

in Figure 2.
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Fig. 2. Fitting the rotation curves of two galaxies in the Ursa Major cluster by the universal curve
(1 —sin2x/2x)"1/2

These spiral galaxies are located in the Ursa Major cluster (UMa). Their numbers are taker
from "The New General Catalogue of Nebulae and Clusters of Stars" (abbreviated as NGC). It i
a catalogue of deep-sky objects in astronomy compiled by John Louis Emil Dreyer in 1888 [8], as
a new version of John Herschel's Catalogue of Nebulae and Clusters of Stars.

Damping oscillations of a rotation curve at far periphery of a galaxy | consider as a
"signature of dark matter”, and | strongly recommend this observational test. It confirms the
existence of dark matter, along with its adequate description by a longitudinal non-gauge vecto
field.

From the physical point of view, a more strong attraction to the center at the periphery of
a galaxy (than predicted by the Newton’s theory) is a consequence of a finite velocity of
propagation of interactions. In the Newton’s theory any variation of a gravitating object
immediately changes the gravitational field everywhere in the whole space. In GeneraltRRelativi
retardation is taken into account, and propagation of interactions has a wave-like charactet
Roughly speaking, the static Newton's potenié) ~ 1/r takes place in the near zone. In the
wave zonanr = 1 it gets proportional tgcos mr) /r. Accordingly, the force of attraction in the
wave zone~m(sinmr)/r at mr » 1 decreases more slowly than the Newton’s ~ 1/72.

As a matter of fact, appearance of a plateau in a rotation curve can be interpreted as
manifestation of gravitational waves in the galactic scale. Meanwhile, huge efforts and funds are

being spent in vain to detect gravitational waves on the Earth, just to prove their existence.
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Regular evolution of the Universe

Discovery of the accelerated expansion of the Universe [3],[4] shows that the source of
acceleration continues to exist for a long time after the “big bang”. Naturally, the fact of
accelerated expansion gave rise to the assumption that the physical vacuum is not just the abser
of the ordinary matter. The existence of dark energy and dark matter, as the unknown source ¢
the Universe's expansion, is widely discussed in modern literature.

If we include into consideration a dark sector providing a mechanism of repulsion, then a
singularity ceases to be an inevitable property of evolution of the Universe. It is reasonable tc
analyze possible scenarios of the Universe evolution in frames of regular solutions of the Einsteit
equations. The approach to the theory of regular evolution of the Universe driven by vector fields
looks most successful among numerous attempts to guess the riddle of accelerated expansion.
allows avoiding unnecessary deb assumptions like “f(R)”, quintessence, phantom-like
cosmologies, .... It allows remaining in the classical frames of the Einstein's general relativity.

The solutions have additional parametric freedom, allowing forgetting the fine-tuning problem.

Atoms
4.6%

Dark energy
72%

Dark matter
230

Today

Fig. 3. Stuff of the Universe

Today itis generally accepted that among the staff of the Universe only 4.5% is the ordinary
matter, see Figure 3. Remaining 95.5% is dark sector, consisting of dark energy (zero-mass fielc
72%) and dark matter (massive fields, 23%).

According to observations, the Universe expands, and its large scale structure remain:

homogeneous and isotropic. Consider the space-time with metric
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a5 =g ar (o' ¢ (o)

I=1

depending on only one time coordinatd = ct. The uniform and isotropic expansion is
characterized by a single metric functidifx?), and% = F'(x%) isthe rate of expansion

Longitudinal massive vector fielgh; in this case is time-like: as it follows from (2), the only
nonzero component . In contrast to a space-like field, a massive time-like field demonstrates

elastic repulsion.
Role of dark energy

The energy-momentum tensor (4) of a massless field acts in the Einstein equations as a ps

of the cosmological constant
1 ~
Ry _EgIKR +Ag, =0.

The contribution of the zero-mass field to the curvature of space-time remains constant in

the process of the Universe evolution. The metric function
0\ __ 0 0 _ A
F(X )—iH(X —XO), H=4\-A/3

is a regular solution of the Einstein equations, providetAha 0. This solution belongs to de
Sitter (1917). It describes either expansion of the Universe at a constait ratd (green
horizontal lineF’'/H = +1 in Figure 4), or contraction (blue horizontal lifgH = —1 in Figure
4) . His the Hubble constant.
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Fl(x"yH

Fig. 4. Rate of evolution of the Univerddpper green horisontal line is expansion. Lower blue

horisontal line is compression. Red curve is a transition from compression to expansion.

As long as the physical nature of vacuum is not known, the "geometrical" origin of the
cosmological constant A and the "material" contribution to A by a zero-mass vector field can not
be separated from each other. The combined action of the massless field and/or the cosmologic
constant is described by the single parametdubble constarit.

Without a massive field”” = 0. The dark energy by itself can be responsible only for
either contraction, or expansion at a constant rate. In particular, a zero-mass longituttimal vec
field alone can not explain the observed switch from deceleration to acceleration at about a half

the age of the Universe [9].

Role of dark matter
With account of a massive time-like fiefg},

F' = |ajlum?¢,°. (6)

F'" is positive, it is repultion. We conclude, that the massive time-like vector field makes
the rate of evolutio’ (x°) a monotonically growing function fromH in the past te-H in future
(red line in Figure 4). If we set the origi? = 0 at the moment wheR’ = 0, then the Universe
contracts ak® < 0, and expands af > 0.x° = 0 is the moment of maximum compression. The

field equations (2) for a longitudinal time-like field reduce to the only one equation
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(¢, +3F4,) +ni*g, =o. 0

In the case of a small mass « H (in dimensional unitanc? « hH) a symmetric

compressiore-expansion transition is described by the analytical solution

-1

F'(Xo)thanh(BHXO), ¢0(X°): %‘]\/a‘[mcos@HXO)J , m<H.

One can find complete derivations, including the analysis of other cases, in my review

article [5].

Dark energy, dark matter, and ordinary matter acting together
Equation (6) takes into account only elastic repultion of a time-like longitudinal vector field

(dark matter). With account of attraction of the ordinary matter equation (6) is replaced by

F'"=al| %ngzﬁoz —%%606’(_3'”). (8)

Hereg, = £(x%) is the energy density of ordinary matter now. The present marfient
is determined byF(x%*) = 0. Remind, thatF’ = 0 at the momentx® = 0 of maximum
compression. In the process of expansion the metric function is negative in the(p%st< 0
atx < x0*.

Equations (7),(8) with initial conditions

0

%T""[gs'z (0)+mg; (o)] =1+ Qe F'(0)=0,F(0)=0,A<0,a<0 )

are easily integrated numerically. As usual, parameter €2,
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denotes the ratio of today's energy density of the ordinary matter to the density of kinetic energy
of expansion at a constant réte Regular solutions are free from any fine tuning. Moreover, the
existing parametric freedom leads to a great variety of possible regular scenarios of evolution. Se
details of numerical and analytical analysis in [5] and [10].

With ordinary matter taken into account, there are two kindes of regular solutions: cosmological,

and oscillating.

Regular cosmological solutiongA < 0)

Cosmological solutions describe a transition from contraction to expansion. The parametet
Fy = F(0) < 0 determines the degree of maximum compression at the turningf@t= 0.
The peak value of the rate of expansion grows exponentially with increasing negative ¥glue of
while the width of the transition decreases exponentially. It resembles inflation, except that there
is no singularity. The regular contractitmexpansion transition is often referred to as
"nonsingular bounce".

In the most interesting case of small< H the transition from contraction to expansion,

resembling inflation, can be described analytically. For the rate of evolBt{ad), and for the

scale factoR(x?) = eF(**) we have

sinh(3Hx") (10)

F'(x")=H 3FN-1
cosh(BHx")-(1+(2/ Qe ™)™

1/3

R(x")=|(e* +%Q)cosh(3Hx°)—%Q ,m<<H.

According to the "sliced cake" diagram (Figure 3) Q ~ 0.06. A transition, resembling
inflation, is shown in Figure 5. For the parameteys—10, nVH = 10, Q = 0.06 the peak is very
sharp, there is 10 order difference in horizontal and vertical scales. The numerical result (blue
dashed curve) coincides with the analytical solution (10) (red solid curve). It is because the
analytical solution, derived fam <« H, is applicable as well fom ~ H in the vicinity of the
turning point, provided thalE§| > 1.

In the process of compression the repulsing teraT®f increases faster than the

compressing term~e~3F. It is the reason why a regular bounce replaces the singularity
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independently of how big the negativg is. After the bounce the repulsing term decreases faster

than the compressing one, leading to matter domination over the field at late times.

F'/H
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Fig. 5.F/H in the vicinity of the turning point. Blue dashed curve is the numerical res#g for

=-10,m/H =10, Q= 0.06. It coincides with the red solid curveanalytical solution (10).

Regular oscillating solutions(A > 0)

Withoutordinary matter regular solutions describing a contradtegxpansion transition
exist only ifA < 0. If the ordinary matter is taken into account, then there appears a possibility for
regular solutions witlA > 0. If A changes sign, then H becomes imaginary. The equations (7),(8)

are invariant againg{ — iH, but the initial conditions differ from (9) :

y 4104 X
—£ ‘[¢'§(o>+m2¢§<o>]=—1+Qe‘”°' F©=0, F(0)=F, A>0, a<0. )

A necessary condition for regular solutions witk 0 follows from the initial conditions
(11). Regular solutions with > 0 exist if there is an extremum mome#t (0) = 0) with the

energy density of ordinary matter exceeding the kinetic energy of expansion:

Qe‘e’%:%o)>1, F'(0)=0, A>0.

In the casen « H, A > 0 the symmetric analytical solution of the equations (7),(8) is
expressed in terms of trigonometric functions. The scale f&{#3) and the rate of evolution

F'(x9),
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1/3
R(x")=e" (1_%Qe—3%)cos(3HX0)+%Qe_3F° . (12)
' sin(3Hx"
F'(x)=H —3F( =) ) 0y’ (13)
(1-(2/Qe"))" —cos(3Hx")

are periodic functions with no singularity, see red curves in Figures 6 a,b. In the sas¢he
originx® = 0 is a moment when the scale fad®°) reaches its maximum. The points of minimum

(where cos(BIX°) = — 1) are

x"=x"="(1+2n), n=0,41,%2,....
3H

For the values of the parametemdd = 0.02, Qexp(—3F,) = 1.032 (barely exceeding the
boundaryQexp(—3F,) = 1) there is no difference in Figures 6 a,b between the curves found
numerically and analytically. Without a massive fiés, = 0) the solutions with positived are
fine-tuned Q exp(-3F,) = 1) and have a periodic singularityxt = x9. In the vicinity of each
singular pointx?, as well as atl — 0, the Hubble constant H drops out, and the scale factor (12)
reduces to the one of the Friedman-Robertson-Walker cosmology. Dark matter, described by
longitudinal time-like vector fieldp, # 0, removes a singularity and rules out the problem of fine

tuning.
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(a) (b)
Fig. 6. Regular oscillating solutions: scale fad®R(0) (a) and rate of evolutiaf’/H (b). The

horizontal axis is "timeHx°. Red curves- numerical solution coinciding with (12), (13) fovH
=0.02, Qexp(—3F,) = 1.032. Blue curves with a periodic singularity are fine-tuned solutions at

the lower boundary of the domain of regular oscillating solutions.

Conclusion

As simple a Lagrangian as possible (1) turns out an appropriate tool for macroscopic
description of dark sector by vector fields. The dark substance is described via the covariant vectc
field equations (2) and the energy-momentum tensor (3). So far, it no longer needs to invent it:

own model of dark matter for understanding each observed astrophysical phenomenon.
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