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A simple Lagrangian (with squared covariant divergence of a vector field as a kinetic term) turned out an adequate 

tool for macroscopic description of dark sector. The zero-mass field acts as the dark energy. Its energy-momentum 

tensor is a simple additive to the cosmological constant. Space-like and time-like massive vector fields describe two 

different forms of dark matter. The space-like field is attractive. It is responsible for the observed plateau in galaxy 

rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary 

matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible 

cosmological and oscillating non-sТnРular sМenarТos of evolutТon of tСe UnТverse. In partТМular, tСe sТnРular “bТР banР” 

turns into a regular inflation-like transition from contraction to expansion with accelerated expansion at late times. 

The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence 

of regular oscillating solutions (in the absence of vector fields). The simplicity of the general covariant expression for 

the energy-momentum tensor allows analyzing the main properties of the dark sector analytically, avoiding 

unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark 

matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating 

in the scale of the Universe.. 
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Introduction  

The two most intriguing long standing problems in astrophysics (plateau in galaxy rotation 

curves [1,2] and accelerated expansion of the Universe [3,4]) strictly pointed to the existence of  

"hidden sector", containing "dark energy" and "dark matter", whose interaction with the ordinary 

matter (baryons and leptons) is observed only via gravitation. 

At first glance, these two problems had nothing to do with one another. The accelerated 

expansion of the Universe indicated the existence of a hidden mechanism of repulsion, while a 

plateau of galaxy rotation curves was the result of some additional attraction. Nevertheless, the 

macroscopic approach to the dark sector problems [5], based on the analysis of vector fields in 

general relativity, provided an appropriate universal tool for theoretical description of both these 

phenomena. The space-like massive vector field is attractive. It is responsible for the observed 

plateau in galaxy rotation curves. The time-like massive vector field displays repulsive elasticity. 

In the scale of the whole Universe it is the source of accelerated expansion. Naturally, the previous 

solutions of the Einstein equations, describing the expansion of the Universe filled with the 
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mutually attracting matter only, inevitably contained a singularity. Inclusion of the repulsive dark 

matter into consideration allows the existence of nonsingular solutions describing various possible 

regular scenarios of evolution of the Universe. 

My review article [5] contains the macroscopic theory of dark sector, based on the analysis 

of vector fields in general relativity. The step by step derivations are accompanied by the 

references to the benchmark achievements of the predecessors. The main attention was paid to 

clarify the validity of basing assumptions. This text of my talk contains a discussion of physical 

nature of manifestations of dark sector. Analytical derivations are presented briefly only by final 

results. 

 

Regularity in General Relativity 

In regular solutions of the Einstein equations all invariants of the Riemann curvature tensor 

are finite. Hence, the invariants of the Ricci tensor �ࡵ�  are finite too. By virtue of Einstein 

equations the requirement of regularity automatically excludes a possibility to achieve an infinite 

value for all the invariants of the energy-momentum tensor �ࡵ�. In General Relativity, the 

distribution/motion of matter and the curvature of space-time are mutually balanced. Necessary 

restrictions, if any, on the signs of existing parameters arise as a consequence of the condition of 

regularity. 

The requirement, that all the invariants of the Riemann curvature tensor are finite, is a 

necessary condition of regularity in General Relativity. 

  

Vector fields describing dark sector 

Vector fields are widely used to describe quantum particles of the ordinary matter. 

Equations for ordinary particles are easily established in accordance with the properties of their 

free motion in plane geometry. This approach is convenient for description of already known 

particles. However, it does not help to describe the unknown substance of dark sector. 

In general relativity, the standard approach, starting from a general form of the Lagrangian 

of a vector field, is capable to describe not only the already known particles. Starting from a general 

form of the Lagrangian of a vector field in general relativity, one should derive vector field 

equations and energy-momentum tensor. Then, excluding the terms associated with the ordinary 

matter, one gets a chance to separate a Lagrangian describing the dark sector. The separation of 

the Lagrangian of dark sector is necessary, especially if the ordinary matter is considered as a 

continuous medium with the macroscopic energy-momentum tensor  
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Otherwise, the ordinary matter would be taken into account twice: as a medium with the 

energy-momentum tensor ୭ܶ୫ �௄, and as quantum particles described by a vector field.  

It turns out that the simplest Lagrangian of a vector field ௅ , 
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L a V                (1) 

 

allows describing the main observed manifestations of dark sector completely within the frames 

of minimal general relativity. In this case, the massless field corresponds to the dark energy, the 

massive space-like field (௅௅<0) is responsible for a plateau in galaxy rotation curves, and the 

massive time-like vector field (௅௅>0) displays a repulsive elasticity. The competition of 

repulsive dark matter and attractive ordinary matter leads to a variety of possible regular scenarios 

of evolution of the Universe. In case of Proca equations, describing ordinary particles, the term 

with covariant divergence is set to zero (a  0). For this reason ܮdୟr୩ gets separated from a 

Lagrangian of ordinary matter. 

In accordance with (1) the field equations and the energy-momentum tensor are 
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Here ܸ′ ؠ ܸ݀ ݀⁄ (௅௅). The energy-momentum tensor dܶୟr୩ �௄ of a zero-mass (V′  ) 

vector field reduces to  
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where ଴′ ؠ ;ெெ ሺͲሻ is the constant divergence of a zero-mass vector field. ሺܶ଴ሻ �௄ acts in the 

Einstein equations as a simple additТon to tСe МosmoloРТМal Мonstant, МСanРТnР Λ to 

 

 2

0
( ( ') (0)).a V   


ϰis the gravitational constant. 

In the case of weak vector fields the second and higher derivatives of the potential ܸ(௅௅) can be neglected, and the energy-momentum tensor of a massive field is  
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In general, it is necessary to consider two independent vectors: ሺ௦ሻ௄  and ሺ௧ሻ௄  for a space-

like and a time-like massive fields with different potentials ሺܸ௦ሻ ቀሺ௦ሻ௄ ሺ௦ሻ௄ቁ and ܸ ሺ௧ሻ ቀሺ௧ሻ௄ ሺ௧ሻ௄ቁ. 
As far as the dark energy is taken into account by Λ̃ , the energy-momentum tensor of the 

dark sector is the sum  

 

( )IK ( )IK
.
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In the scale of a galaxy (~ 10 kpc) the space-like vector field (ܮ0>ܮ) dominates. It is 

responsible for the plateau in galaxy rotation curves. The time-like field (ܮ0<ܮ) dominates at the 

scales much larger than the distance between the galaxies, where the Universe can be considered 

uniform and isotropic. The time-like field displays repulsive elasticity. Together with the dark 

energy and the ordinary matter it gives rise to a variety of possible regular scenarios of evolution 

of tСe UnТverse, anН rules out tСe problem of fТne tunТnР. In partТМular, tСe sТnРular “bТР banР” 

turns into a regular inflation-like bounce with accelerated expansion at late times. 

It would be interesting to trace how the additional attraction of the space-like dark matter, 

dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, 

dominating in the scale of the whole Universe. Both types of massive fields ሺ௦ሻ௄  and ሺ௧ሻ௄  are  active 

in the intermediate region. 
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The study of the structure of the Universe in the intermediate range (Mpc to hundred Mpcs) 

had been initiated in the pioneering papers by Zel'dovich [6]. Continuous research by his followers 

[7] shows that dark energy and dark matter significantly affect the structural dynamics of galaxies 

and clusters in this range. Utilizing the energy-momentum tensor dܶୟr୩ �௄ in the analysis of the 

large scale structure of the Universe would allow avoiding unnecessary model assumptions. 

 

Galaxy rotation curves 

The velocity V of a star, orbiting around the center of a galaxy and satisfying the balance 

between the centrifugal V²/r and centripetal GM(r)/r² aММelerations, should decrease with radius r 

of its orbit as �ሺ�ሻ~૚ √�⁄   at r → ∞. Hoаever, numerous observeН НepenНenМes V(r), named 

galaxy rotation curves, practically remain constant at far periphery of a galaxy. It had been a 

fundamental problem for a long time, because General Relativity reduces to Newton’s tСeorв Тn 

the limit of nonrelativistic velocities and weak gravitation. 

Applying general relativity to the galaxy rotation problem it is reasonable to consider a static 

centrally symmetric metric 

 

2 ( ) 0 2 ( ) 2 2 2( )I K r r
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It МontaТns tаo metrТМ funМtТons Ȟ(rΨ anН Ȝ(r) depending on only one coordinate - circular 

radius r. It is the same metric as for a Schwarzschild solution.   

Real distribution of stars and planets in a galaxy is neither static, nor centrally symmetric. 

However, most galaxies are concentrated around super heavy objects, be it a black hole, or a 

neutron star. The deviation from central symmetry, caused by peripheral stars, is small. In the 

background of centrally symmetric metric the vector  ࡵ is longitudinal. Its only non-zero 

component  � depends on r.  

Omitting details (one can see a complete derivation in my review article [5]), I present here 

the following analytical formula for the velocity �ሺ�ሻ of a star, rotating around a black hole far 

outside the Schwarzschild radius ���ܐ ∶ 
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   is the plateau velocity at ݎ → ∞,  and ݉ = √| ଴ܸ′ ܽ⁄ |  is the mass of 

a space-like vector field. Recall that ଴ܸ′ = ܸ݀ ݀⁄ (௅௅) at ௅௅ = Ͳ. Without dark matter ( ଴′ =Ͳ) (5) would give the Newton's ܸሺݎሻ ~ ݎ−ଵ/ଶ  at ݎ → ∞. In the presence of dark matter (଴  ′≠ 0Ψ 

the velocity of rotation ܸሺݎሻ tends to ܸ୮୪ at ݎ → ∞ with damping oscillations. 

The deviation from the Newton's law due to dark matter takes place at  ݎ ≳ ܿ)�c�ݎ ୮ܸ୪⁄ )ଶ. 
At ݎ ب ܿ)�c�ݎ ୮ܸ୪⁄ )ଶ the curve of rotation around a black hole is a universal function, see Figure 

1. In dimensionless units ܸ/ ୮ܸ୪ and ݔ =  .there are no parameters ݎ݉

 

Fig. 1. Universal function  1/2

1 2 /2sin x x  .  

 

Though the rotation curves of galaxies differ from one another, the deviation from the 

σeаton’s �−૚/૛ ܡܠ���܏ � ܎ܗ ܡܚ܍ܐܘܑܚ܍ܘ ܍ܐܜ ܖܗ is their common feature. In order to compare 

with observations, it looks natural to choose the galaxies having stars outside the main disc. Fitting 

the rotation curves of two such galaxies by the universal function  ሺ૚ −  ૛�/૛�ሻ−૚/૛ is shownܖܑܛ

in Figure 2. 
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Fig. 2. Fitting the rotation curves of two galaxies in the Ursa Major cluster by the universal curve  ሺ૚ −  ૛�/૛�ሻ−૚/૛ܖܑܛ
 

These spiral galaxies are located in the Ursa Major cluster (UMa). Their numbers are taken 

from "The New General Catalogue of Nebulae and Clusters of Stars" (abbreviated as NGC). It is 

a catalogue of deep-sky objects in astronomy compiled by John Louis Emil Dreyer in 1888 [8], as 

a new version of John Herschel's Catalogue of Nebulae and Clusters of Stars. 

Damping oscillations of a rotation curve at far periphery of a galaxy I consider as a 

"signature of dark matter", and I strongly recommend this observational test. It confirms the 

existence of dark matter, along with its adequate description by a longitudinal non-gauge vector 

field. 

From the physical point of view, a more strong attraction to the center at the periphery of 

a Рalaбв (tСan preНТМteН bв tСe σeаton’s tСeorвΨ Тs a МonsequenМe of a fТnТte veloМТtв of 

propaРatТon of ТnteraМtТons. In tСe σeаton’s tСeorв anв varТatТon of a РravТtatТnР objeМt 

immediately changes the gravitational field everywhere in the whole space. In General Relativity 

retardation is taken into account, and propagation of interactions has a wave-like character. 

Roughly speaking, the static Newton's potential �ሺ�ሻ ~ 1/ � takes place in the near zone. In the 

wave zone ࢓� ≳ ૚ it gets proportional to ሺ�࢓ܛܗ�ሻ �⁄ . Accordingly, the force of attraction in the 

wave zone ~࢓ሺ࢓ܖܑܛ�ሻ/� at  ࢓� ب ૚  НeМreases more sloаlв tСan tСe σeаton’s ~ 1/ �૛.   
As a matter of fact, appearance of a plateau in a rotation curve can be interpreted as a 

manifestation of gravitational waves in the galactic scale. Meanwhile, huge efforts and funds are 

being spent in vain to detect gravitational waves on the Earth, just to prove their existence.  
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Regular evolution of the Universe 

Discovery of the accelerated expansion of the Universe [3],[4] shows that the source of 

aММeleratТon МontТnues to eбТst for a lonР tТme after tСe “bТР banР”. σaturallв, tСe faМt of 

accelerated expansion gave rise to the assumption that the physical vacuum is not just the absence 

of the ordinary matter. The existence of dark energy and dark matter, as the unknown source of 

the Universe's expansion, is widely discussed in modern literature.  

If we include into consideration a dark sector providing a mechanism of repulsion, then a 

singularity ceases to be an inevitable property of evolution of the Universe. It is reasonable to 

analyze possible scenarios of the Universe evolution in frames of regular solutions of the Einstein 

equations. The approach to the theory of regular evolution of the Universe driven by vector fields 

looks most successful among numerous attempts to guess the riddle of accelerated expansion. It 

allows avoiding unnecessary moНel assumptТons lТke “f(RΨ”, quТntessenМe, pСantom-like 

МosmoloРТes, …. It alloаs remaТnТnР Тn tСe МlassТМal frames of tСe EТnsteТn's Рeneral relatТvТtв. 

The solutions have additional parametric freedom, allowing forgetting the fine-tuning problem. 

 

Fig. 3. Stuff of the Universe  

 

Today it is generally accepted that among the staff of the Universe only 4.5% is the ordinary 

matter, see Figure 3. Remaining 95.5% is dark sector, consisting of dark energy (zero-mass field, 

72%) and dark matter (massive fields, 23%). 

According to observations, the Universe expands, and its large scale structure remains 

homogeneous and isotropic. Consider the space-time with metric 
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depending on only one time coordinate �૙ =  The uniform and isotropic expansion is .�ࢉ

characterized by a single metric function �ሺ�૙ሻ, and 
૙�ࢊ�ࢊ ؠ �′ሺ�૙ሻ  ܑܛ the rate of expansion. 

Longitudinal massive vector field �ࡵ in this case is time-like: as it follows from (2), the only 

nonzero component is �૙. In contrast to a space-like field, a massive time-like field demonstrates 

elastic repulsion.  

 

Role of dark energy 

The energy-momentum tensor (4) of a massless field acts in the Einstein equations as a part 

of the cosmological constant �̃: 

 

 
1

0.
2IK IK IK

R g R g    

 

The contribution of the zero-mass field to the curvature of space-time remains constant in 

the process of the Universe evolution. The metric function 

    0 0 0

0
,        /3F x H x x H      

 

is a regular solution of the Einstein equations, provided that �̃ < ૙. This solution belongs to de 

Sitter (1917). It describes either expansion of the Universe at a constant rate �′ =  green) ࡴ

horizontal line �′/ࡴ = +૚ in Figure 4), or contraction (blue horizontal line �′/ࡴ = −૚ in Figure 

4) . H is the Hubble constant. 
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Fig. 4. Rate of evolution of the Universe. Upper green horisontal line is expansion. Lower blue 

horisontal line is compression. Red curve is a transition from compression to expansion. 

 

As long as the physical nature of vacuum is not known, the "geometrical" origin of the 

МosmoloРТМal Мonstant Λ anН tСe "materТal" МontrТbutТon to �̃  by a zero-mass vector field can not 

be separated from each other. The combined action of the massless field and/or the cosmological 

constant is described by the single parameter  Hubble constant H. 

Without a massive field �′′ = ૙. The dark energy by itself can be responsible only for 

either contraction, or expansion at a constant rate. In particular, a zero-mass longitudinal vector 

field alone can not explain the observed switch from deceleration to acceleration at about a half of 

the age of the Universe [9].  

 

Role of dark matter 

With account of a massive time-like field �૙ 

 �′′ =  ૛�૙૛. (6)࢓�|�|

  �′′ is positive, it is repultion. We conclude, that the massive time-like vector field makes 

the rate of evolution �′ሺ�૙ሻ a monotonically growing function from −ࡴ in the past to +ࡴ in future 

(red line in Figure 4). If we set the origin �૙ = ૙  at the moment when �′ = ૙, then the Universe 

contracts at x⁰ < 0, and expands at x⁰ > 0. x⁰ = 0 is the moment of maximum compression. The 

field equations (2) for a longitudinal time-like field reduce to the only one equation 
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In the case of a small mass, ࢓ ا ૛ࢉ࢓ in dimensional units)  ࡴ ا ℏࡴ) a symmetric 

compression-to-expansion transition is described by the analytical solution 
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0
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One can find complete derivations, including the analysis of other cases, in my review 

article [5]. 

 

 Dark energy, dark matter, and ordinary matter acting together 

Equation (6) takes into account only elastic repultion of a time-like longitudinal vector field 

(dark matter). With account of attraction of the ordinary matter equation (6) is replaced by  

 

2 2 ( 3 )

0 0

1
'' | | .

2

FF a m e                                       (8) 

 

Here �૙ = �ሺ�૙כሻ is the energy density of ordinary matter now. The present moment �૙כ 
is determined by �ሺ�૙כሻ = ૙. Remind, that �′ = ૙ at the moment �૙ = ૙ of maximum 

compression. In the process of expansion the metric function is negative in the past: �ሺ�૙כሻ < ૙  

at � < �૙כ. 
Equations (7),(8) with initial conditions  
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are easТlв ТnteРrateН numerТМallв. χs usual, parameter ȍ, 
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denotes the ratio of today's energy density of the ordinary matter to the density of kinetic energy 

of expansion at a constant rate H. Regular solutions are free from any fine tuning. Moreover, the 

existing parametric freedom leads to a great variety of possible regular scenarios of evolution. See 

details of numerical and analytical analysis in [5] and [10]. 

With ordinary matter taken into account, there are two kindes of regular solutions: cosmological, 

and oscillating. 

 

Regular cosmological solutions (�̃ < ૙ሻ 
Cosmological solutions describe a transition from contraction to expansion. The parameter �૙ = �ሺ૙ሻ < ૙ determines the degree of maximum compression at the turning point �′ሺ૙ሻ = ૙. 

The peak value of the rate of expansion grows exponentially with increasing negative value of �૙, 
while the width of the transition decreases exponentially. It resembles inflation, except that there 

is no singularity. The regular contraction-to-expansion transition is often referred to as 

"nonsingular bounce".  

In the most interesting case of small ࢓ ا  ,the transition from contraction to expansion ࡴ

resembling inflation, can be described analytically. For the rate of evolution �′ሺ�૙ሻ, and for the 

scale factor �ሺ�૙ሻ =  we have (૙�)�ࢋ
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χММorНТnР to tСe "slТМeН Мake" НТaРram (FТРure γΨ ȍ ∼ 0.06. A transition, resembling 

inflation, is shown in Figure 5. For the parameters F₀ 10, m/H  10, ȍ = 0.0θ tСe peak Тs verв 

sharp, there is 10 order difference in horizontal and vertical scales. The numerical result (blue 

dashed curve) coincides with the analytical solution (10) (red solid curve). It is because the 

analytical solution, derived for ࢓ ا  in the vicinity of the ࡴ ~ ࢓ is applicable as well for ,ࡴ

turning point, provided that |F₀| 1 ب. 

In the process of compression the repulsing term ~ࢋ−�� increases faster than the 

compressing term ~ࢋ−૜�. It is the reason why a regular bounce replaces the singularity 
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independently of how big the negative F₀ is. After the bounce the repulsing term decreases faster 

than the compressing one, leading to matter domination over the field at late times.  

 

Fig. 5. F′/H in the vicinity of the turning point. Blue dashed curve is the numerical result for F₀ 
10, m/H = 10, ȍ = 0.0θ. It МoТncides with the red solid curve  analytical solution (10). 

 

Regular oscillating solutions (�̃ > ૙ሻ 
Without ordinary matter regular solutions describing a contraction-to-expansion transition 

exist only if Λ̃ < Ͳ. If the ordinary matter is taken into account, then there appears a possibility for 

regular solutions with Λ̃ > Ͳ. If Λ МСanРes sТРn, tСen H becomes imaginary.  The equations (7),(8) 

are invariant against ܪ →  : but the initial conditions differ from (9) ,ܪ�

 

0
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A necessary condition for regular solutions with Λ̃ > Ͳ follows from the initial conditions 

(11). Regular solutions with Λ̃ > Ͳ  exist if there is an extremum moment (ܨ′ሺͲሻ = Ͳ) with the 

energy density of ordinary matter exceeding the kinetic energy of expansion: 

  
0

3
1, '(0) 0,

ε Ͳ
0.Ω F

e F
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In the case m ا H, Λ̃ > Ͳ the symmetric analytical solution of the equations (7),(8) is 

expressed in terms of trigonometric functions. The scale factor R(x⁰) and the rate of evolution �′ሺݔ଴ሻ, 
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are periodic functions with no singularity, see red curves in Figures 6 a,b. In the case Λ̃ > Ͳ the 

origin x⁰ = 0 is a moment when the scale factor R(x⁰) reaches its maximum. The points of minimum 

(where cos(3Hx⁰) ) are  

 

 0 0 1 2 ,  0, 1, 2, 
3n

x x n n
H

       . 

 

For the values of the parameters m/H  0.0β,  ȍeбp(3F₀)  1.032 (barely exceeding the 

boundary ȍeбp(3F₀)  1) there is no difference in Figures 6 a,b between the curves found 

numerically and analytically. Without a massive field ሺ�૙ = ૙ሻ the solutions with positive  �̃  are 

fine-tuned (ȍ eбp(3F₀)  1) and have a periodic singularity at �૙ = ૙࢔� . In the vicinity of each 

singular point �࢔૙, as well as at H → 0, tСe Hubble Мonstant H drops out, and the scale factor (12) 

reduces to the one of the Friedman-Robertson-Walker cosmology. Dark matter, described by a 

longitudinal time-like vector field �૙ ≠ ૙, removes a singularity and rules out the problem of fine 

tuning. 
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Fig. 6. Regular oscillating solutions: scale factor R/R(0) (a) and rate of evolution ܪ/′ܨ  (b). The 

horizontal axis is "time" Hx⁰. Red curves  numerical solution coinciding with (12), (13) for m/H 

= 0.0β,  ȍeбp(3F₀)  1.032.  Blue curves with a periodic singularity are fine-tuned solutions at 

the lower boundary of the domain of regular oscillating solutions. 

 

Conclusion 

As simple a Lagrangian as possible (1) turns out an appropriate tool for macroscopic 

description of dark sector by vector fields. The dark substance is described via the covariant vector 

field equations (2) and the energy-momentum tensor (3). So far, it no longer needs to invent its 

own model of dark matter for understanding each observed astrophysical phenomenon. 
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