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Violation of the gravitational weak equivalence principle in quantum mechanics (WEQ) has been earlier studied using 

Gaussian wave packets in free fall. Here we study the effect of quantum statistics on the -Gaussian as well as non

rrival time distribution of quantum particles computed through the probability current density. We show that a

symmetrization or asymmetrization of the wave function impacts the arrival time distribution of wavepackets. The 

                                .the mass of the particles, and varies according to the statisticsmean arrival time is dependent on  
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Introduction 

The motion of freely falling particles is traditionally taken to conform to the weak 

equivalence principle (WEP) of gravitation which states that all sufficiently small objects fall with 

the same acceleration independent of their mass and constituent in a uniform gravitational field. 

WEP is regarded to be a fundamentally classical and local principle. Study of the equivalence 

principle in quantum mechanics has evoked a lot of interest. A statement of the principle in 

quantum mechanics is as follows: "The results of experiments in an external potential comprising 

just a sufficiently weak, homogeneous gravitational field, as determined by the wavefunction, are 

independent of the mass of the system" [1]. This assertion is also called the weak equivalence 

principle of quantum mechanics (WEQ). 

Various approaches have been used to study the possibility of violation of weak 

equivalence principle in quantum mechanics, such as the prediction of mass-dependence of the 

radii, frequencies and binding energy of a particle in an external gravitational field [2]. A gedanken 

experiment studying the free fall of quantum test particles in a uniform gravitational field predicts 

mass-dependence of the time of flight distribution [3]. Another approach using a model quantum 

clock predicts violation of WEQ in the vicinity of the turning point of classical trajectories [4]. 

Experimental violation has been observed in the interference phenomenon associated with the 

gravitational potential in neutron and atomic interferometry experiments [5-6]. An explicit mass 

dependence of the position probabilities has been shown for quantum particles projected upwards 

against gravity around both the classical turning point and the point of initial projection using 
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Gaussian [7] and non-Gaussian [8] wavepackets. Explicit mass dependence of the mean arrival 

time at an arbitrary detector location has also been predicted for a Gaussian [7] wave-packet under 

free fall, an effect which may be enhanced using suitably chosen non-Gaussian wavepackets [8].  

The violation of WEQ has been established in single particle quantum mechanics. In the 

present work we are interested to examine the effect of quantum statistics on the WEQ. Several 

important phenomena based on quantum statistics are experimentally revealed through the 

measurement of time of flight of quantum particles in free fall [9]. Here we study the effect of 

statistics on the arrival time distribution of a system of freely falling wavepackets consisting of 

two identical particles. Consideration of quantum mechanical effects on such time of flight 

distributions beyond the standard semi-classical analysis could reveal interesting observational 

effects, as discussed earlier in the literature [10]. Our analysis is based on the probability current 

approach for computing the mean arrival time distribution of wavepackets [11].  

 

Formalism 

We consider a two-body system composed of two non-interacting identical particles in an 

external field. Identical particles are classically distinguishable and obey Maxwell-Boltzmann 

(MB) statistics, while they are indistinguishable in quantum mechanics and obey different 

statistics. For Fermi-Dirac (Bose-Einstein) statistics the total wavefunction must be 

antisymmetrized (symmetrized) under the exchange of particles in the system. Since particles do 

not ТnteraМt, solutТons of tСe SМСröНТnРer equatТon are МonstruМteН from tаo sТnРle-particle 

wavefunctions ψୟ and ψୠ as follows [1] 

 

(1)                           1 2 a 1 b 2 b 1 a 2
Ȳ z ,z ,t  N ψ z ,t ψ z ,t ψ z ,t ψ z ,t      

 

sign stands for BE (FD) statistics and the normalization constants are  where the upper (lower)
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Here we employ the probability current approach to study the effect of particle statistics on the 

arrival time distribution of a two-body system. In this approach, the arrival time distribution at a 

detector location ݖ = ܼ is given by [11] 
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As a result one obtains 

  

(3)                                                                
0

  Π Z,  t  Z dt t   

 

for the mean arrival time at the detector location ݖ = ܼ. Now, using single-particle continuity 

equation, one obtains the following relation for the one-body probability current density [12]  

 

                                               

Ψζ            (    
     
   

* * *

1 a b

*

b a

2,  | { ψ t |ψ t  
 ψ t |ψ t }

a b a
a b b

b
a

j z t N
m z z z

z

    



       




I

 

 

time of particles in free fallArrival  

The arrival time of freely falling wavepackets using the probability current approach has 

been studied earlier [7-8], where it was noted that the arrival time distribution acquires a mass-

dependence due to wavepacket spread. Now we study the effect of symmetrization and 

asymmetrization of the wavefunction of a system of two particles falling freely under gravity. Here 

we choose the initial single-particle wavefunctions as Gaussians,  
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and set the initial velocity of the particles to be zero, i.e., the particles are dropped from rest 

with �௔ = �௕ = Ͳ, and accelerate downwards under gravity with ݃ = ͳͲ ݉/ݏଶ. The time-evolved 

single-particle wavefunctions in the uniform gravitational field ܸሺݖሻ =  ,are given by [13] ݖ݃݉
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 where ݏ௧� = �଴� ቀͳ + �ℏ௧ଶ௠�బమቁ. The overlap integral is given by  
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and hence the normalization constants become 
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Using the following values of the parameters �଴௔ = �଴௕ = �଴ = ͷ �m, ௖௔ݖ = ͻ�଴, , ௖௕ݖ =7�଴, ݉ = ݉௡ = ͳ.͸7 × ͳͲ−ଶ଻k� ܽ݊݀ ݐ௥௘௙ = Ͳ.7ͻ ms fo� nume��cal calculat�ons, we have 

plotted in figure 1 the arrival time distribution at the detector location ܼ = Ͳ by substituting the 

expression for the time-evolved wavefunction eq.(5) in the expression for the probability current 

given by eq.(4), and then using eq.(2). As one sees, the particle statistics has an impact on the 

arrival time distribution. Such an effect of symmetrization and asymmetrization of a two-body 

wavefunction on arrival times of freely falling wavepackets may be regarded as nonlocal (in the 

sense that the single-particle arrival time distribution depends on the spatially separated second 
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particle, as well), and thus contrary to the tenet of the local weak equivalence principle of classical 

gravity, which forms the inspiration of the statement of WEQ. 

 

Fig. 1. Arrival time distribution versus time. 

 

The mass dependence of arrival time for particles in free fall is exhibited in the plot of the 

mean arrival time versus mass in the figure 2. Here again, the mean arrival time is computed at the 

detector location ܼ = Ͳ using eq.(2) and eq.(3) after substituting the expression for the time-

evolved wavefunction eq.(5) in the expression for the probability current given by eq.(4). The 

values of the parameters used are as before. One sees that for all types of statistics the mean arrival 

time decreases with mass at first and then becomes constant for large mass.  

 

Fig. 2. Mean arrival time versus mass. 
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Conclusions 

            In this work we have studied some effects of quantum statistics on the equivalence 

principle in quantum mechanics. Symmetrization and asymmetrization of the wavefunction clearly 

Such an effect is more prominent compared to the affects  the magnitude of the violation of WEQ. 

bability current density dependence of the pro-effect of violation of WEQ [13] through explicit spin

However, the violation of WEQ observed explicitly for low masses tends to disappear [14]. 

smoothly in the limit of large mass. The classical limit of the mean arrival time may be computed 

using the probability current approach [15]. We observe here that even in the presence of particle 

smoothly through this  statistics, the classical limit of mean arrival time emerges

                                                                                                                                    approach.          

 

Acknowledgements: ASM and DH acknowledge support from the project SR/S2/LOP-08/2013 of 

DST, India. 

 

References  

1. Holland P.R. (1993). The Quantum Theory of Motion. Cambridge: Cambridge University 

Press.   2. Greenberger D.M., Overhauser A.W. (1979). Rev. Mod. Phys., 51, 43.                                          

3. Viola L., Onofrio R. (1997). Phys. Rev., D 55, 455. 

4.  Davies P.C.W. (2004). Class. Quantum Grav. 21, 2761. 

5.  Colella R., Overhauser A.W., Werner S.A. (1975). Phys. Rev. Lett., 34, 1472. 

6.  Peters A., Chung K.Y., Chu S. (1999). Nature, 400, 849. 

7. Ali Md. M., Majumdar A.S., Home D., Pan A.K. (2006). Class. Quant. Grav., 23, 6493  

8. Chowdhury P., Home D., Majumdar A.S., Mousavi S.V. (2012). Class. Quant. Grav., 29, 

025010.  

9. Anderson M.H. (1995). Science, 269, 198. 

10. Ali Md.M., Majumdar A.S., Home D., Pan A.K. (2007). Phys. Rev., A 75, 042110. 

11. Dumont R.S., Marchioro T.L. (1993). Phys. Rev., A 47, 85.  

12. Mousavi S.V., Miret-χrt´es S. (β01ηΨ. Phys. Scr., 90, 025001. 

13. Mousavi S.V., Majumdar A.S., Home D. (2015). arXiv, 1502.07875. 

14. Holland P.R. (1999).  Phys. Rev., A 60, 4326. 

15. Ali Md.M., Majumdar A.S., Pan A.K. (2006). Found. Phys. Lett., 19, 723. 

 
 


