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Electric charges possess momenta and energies that we could experience with our sense organs. Therefore, electric 

charges are real physical entities i.e., objects. All objects are subject to   gravitation. Electric charges should similarly   

be the subject to gravitation.  The acceleration of a point charge should, therefore, be the same as that of a point object 

in magnitude and in direction in the same gravitating field and that acceleration, too, should be directed towards the 

interacting gravitating field. This implies that the gravitating mass of a point charge is proportional to its longitudinal 

electromagnetic mass  3 0m  (where γ=1/k and k=(1-u2/c2)1/2 , u the velocity of the charge in the free space and m0 is 

the rest electromagnetic mass of the charge). We shall show in this paper that this simple classical consideration along 

with classical physics is equivalent to the general  relativity theory. 
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1. Introduction 

In  the previous discussion [1], we have  used the  classical consideration that electric and 

magnetic fields possess momenta and energies that we could experience with our sense organs. 

Therefore, these are real physical entities i.e., objects. All objects are subject to gravitation and at 

tСe near vТМТnТtв of tСe EartС’s surfaМe tСeв are МarrТeН аТtС tСe EartС. TСerefore, eleМtrТМ anН 

magnetic fields should similarly be subject to gravitation and at the vicinitв of tСe EartС’s surfaМe 

they should similarly be carried with the Earth. We have shown therein that this simple classical 

consideration along with classical physics is equivalent to the special relativity theory.  

In the present discussion, we shall show that classical physics along with a similar classical 

consideration that electric charges are subject to gravitation is equivalent to the general relativity 

theory.  

To reach such an interesting conclusion let us review three electrodynamic quantities viz,. 

Electromagnetic momentum (P), Longitudinal electromagnetic mass (LEM) and Transverse 

electromagnetic mass (TEM) relating to a steadily moving point charge. 
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2. Three  classical Electrodynamic Equations 

Following Maxwell-Heaviside, Searle elegantly deduced the magnetic energy (T) of a 

steadily moving point charge. Following Searle, we have deduced the electromgnetic momentum 

(P), Longitudinal electromagnetic mass (LEM) and Transverse electromagnetic mass (TEM) 

classically in the previous discussion [1] and elsewhere [2, 3] which are as follows: 
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Q  is the quantity of charge associated with an extremely small conducting sphere with radius įR,  

u is the velocity of  the charge .  

All those three electromagnetic quantities are real physical quantities and they do exist due 

to the real existence of a point charge and its motion.  

The equation of motion of a point charge is determined by those two real electromagnetic 

masses, i.e., Longitudinal and Transverse electromagnetic masses of a steadily moving point 

charge. 

Now the question arises, if a point charge is subject to gravitation, what are the 

contributions of these real electromagnetic masses to the gravitating mass of a point charge when 

the point charge steadily moves in a gravitating field?  

We shall study the problem in the next sections. 

 

3. Gravitating and inertial masses of electric charges 

Electric charges possess momenta and energies that we could experience with our sense 

organs. Therefore, these too are real physical entities i.e., objects. All objects are subject to   

gravitation. Electric charges should similarly be subject to gravitation.   

 The acceleration of a point charge should , therefore,  be the same as that  of a point object  

in magnitude and in direction in the same gravitating field and that acceleration, too ,should be 

directed towards the interacting gravitating field (unlike its acceleration during its interaction with 
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the electric field). This implies that the gravitating mass of a point charge is proportional to its 

longitudinal electromagnetic mass  3 0 .m  

Transverse electromagnetic mass 0m should play no role in this interaction. If it played 

any role in this interaction, material bodies (all of which contain charges) should have   acceleration 

not always directed towards the centre of gravity of the gravitating body and that acceleration too 

would differ in magnitude and in direction in different interactions. But this is not the case as 

observed in many precise experiments.  Thus, in a gravitating field, a point charge acts as a mass 

point; mass of the mass point is proportional to the longitudinal electromagnetic mass of the point 

charge.   

Suppose that an object of material mass mm   МontaТns ‘Q’ amount of positive and negative 

charges with the rest electromagnetic mass 0m  in total [vide Eqs. (1) & (2)] and for simple 

calculation assume that the positive and negative charges are concentrated at two points separately 

near the centre of mass of the object. Therefore, an object (containing charges) at rest in free space 

should have two masses viz., material mass  mm  and electromagnetic mass 0m , both of which are 

subject  to gravitation. 

But we do know neither the material mass mm  nor the rest electromagnetic mass 0m  

associated with the object. We know only  

 

0
( )

m
m m m                                                                (4) 

 

which is a measurable quantity measured when the object is at rest on the surface of the Earth.  

When the velocity is large, mass of the object should be  0
3mmm   which is not a 

determinable quantity and, therefore, could not be used for experimental physics. In any case it 

could not be greater than 3 3
0( )mm m m    which is a determinable quantity and, therefore, we 

could use it as the limiting gravitating mass of an object moving with high velocity. This limiting 

value of the gravitating mass of an object will help us to understand the approximate motion of 

objects in a gravitating field. 

Thus, we see that the limiting gravitating mass of an object (LGM) 

 

                                    LGM 3 3
0( )  mm m m                                                 (5) 
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anН Тf  GalТleo’s eбperТment   was exactly valid for all objects,  this mass is proportional to the 

inertial mass  of  the  object.  

Therefore, considering the proportionality constant to be unity, we could write that the 

limiting inertial mass (LIM) of the object is  

 

LIM 3 3
0( )  mm m m                                                  (6) 

 

which implies that the linear  momentum (P)  of  the  object is [3] 

 

3 3
0( )   mm m mP u u                                                   (7) 

 

4.1. Equation of  motion of the planets   round  the Sun  

Let us now study the motion of a planet (which obviously contains charges) with an initial 

veloМТtв u СavТnР lТmТtТnР mass γ3m [as per Eqs. (4), (5) and (6)] when it passes through the 

gravitating field of the sun having mass M  (material mass + mass originating from associated 

charges). The subsequent motion of the planet will be confined to the plane containing the direction 

of acting force and the direction of initial velocity. Let us fix a polar coordinate in this plane where 

the centre of the sun is the origin and the initial position of the planet is  ).,( r    

The motion of this planet as per Newtonian physics should be governed by following equations.  

Radial  Force  

 3 2 3 2/ ( )GMm r m r r                                                    (8)
      

                   
where G is the  gravitational constant  and the Cross-Radial Force 
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where m  has been replaced by γ3m as per our analysis in Section (3). 

Using Eqs. (9) and (10) we have for a very small eccentricity of the planets [3]  
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4.2. Equation of Motion of the light rays in the gravitating field of the Sun   
                                                            

Light-rays possess electromagnetic momentum and electromagnetic energy. Therefore, a 

point light will similarly be subject to gravitation as in the case of a point charge. But in this case, 

for a point light 0m    0, and, therefore,   H   and the equation of motion of a point light in a 

gravitating field will be following Eq. (11)  
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when light moves through a medium near the sun or when  light from a star has lost much of its 

velocity as it moves away from the star. This will at once explain the bending of light rays grazing 

the surface of the sun. 

 

5. Gravitational Red Shift 

Similarly, a ray coming from a distant star will lose its velocity due to the gravitating force 

of the star acting on the ray and thereby the frequency of the ray will change as it moves away 

from the star. The abridged deduction is given below. 

Suppose that a ray with the radian frequency  is coming from the surface of a star of 

radius R  and of massM  to the surface of the Earth which is x  distance away from the centre of 

a star. As per our previous discussion, electromagnetic energy has the same acceleration as that of 

material bodies as well as point charges in the same gravitational field. 

Let ( )f R  be the gravitational acceleration of a ray on the surface of a star and f (x) be the 

gravitational acceleration of the same ray when it is on the surface of the Earth. 

Then, we have from the law of gravitation [4], 
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Now, we have the differential equation for the velocity of the ray,  

 

v

c

dv

dx 2
  

t

x

R

dx
GM

x
                             (14) 

 

аСere ‘М’ Тs tСe veloМТtв of tСe raв on tСe surfaМe of tСe  star anН  v  Тs tСe veloМТtв of tСe same raв 

on the surface of the Earth. From which we have,  

Therefore,                                              2
(1 )  GM

v c
Rc                                               

 (15) 

 

when x  is large, from  which we have, 

  / 2ω / ω 1 Gε / RМ                                  (16)                     

 

( /  is the radian frequency of the same light ray at the surface of the Earth), as the number of 

complete waves passing through a point (i.e., frequency) must be proportional to the velocity of 

the wave. For full deduction vide [2].
                

                    

6. Precessions of orbiting  spinning gyroscopes and orbiting rigid  spinning electrons  

(a) Orbital Precession [3,5] 

Precession is literally the change in the orientation of the axis of the spinning body. It is 

measured by the angle between the initial position and the final position of the spinning axis of the 

gyroscope. 

When  a spinning gyroscope is rotating in a near –Earth, near-circular polar orbit around 

the Earth,  apart from spinning , the gyroscope has two other motions,  viz.,   (i) the significant 

driving motion  with a velocity u in the orbital plane due to its motion in its orbit  and (ii) an 

insignificant Coriolis motion  with an acceleration -2ωEusinφ  (ωE is the angular velocity of the 

spinning Earth, φ  is the latitude at the point of observation) due to the Coriolis action of the 
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spinning Earth.  We shall show below that  each  motion  will cause precessions  in  each relevant 

plane. 

 

Fig. 1. Orbital precession of an orbiting spherical rigid spinning gyroscope 

 

(The brief outline of deduction: When a gyroscope moves in its near-Earth near –circular   

orbit around the Earth , in the orbital plane (motion plane) as well as in tangential plane (Coriolis 

plane),    the direction of momentum of  any infinitesimal mass element of the gyroscope should 

be  different from the constrained direction of movement of that mass element carried with the 

centre of the gyroscope. This difference of directions of motion of the same mass element  at the 

same instant should cause precessions of the gyroscope  in the motion plane as well as in the 

Coriolis plane.) 

Now consider that this paper plane is the orbital plane of the orbiting gyroscope. The centre 

of the gyroscope starts its orbital motion  with a velocity u from the point O and in an infinitesimal 

time interval dt it reaches  the point P. We may consider roughly that during the time  interval  

dt ,  the path OP is a small straight line.  The   motion of the centre of the gyroscope in the orbital 

plane is a curved motion, and therefore, that motion is the resultant of two motions  i.e., (i) one 

significant  motion ux  towards OX, tangent to the orbit at O and (ii) an insignificant motion uy   

towards OY normal  to the tangent at O (Fig.1). 
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Therefore, the angle between the direction of motion of the centre of the gyroscope and  

OX  

 

1tan tan  y

x

u u
XOP

u u

/

                                                 (17) 

 

In circular motion, the tangential component is much more than the normal component, 

and  in the instant case
 
 θ1 is extremely small, therefore we have  

 

       
1  u

u

/

                                               
 (18)

        

                 
  

Now the x-component and the y-component of the linear momentum of the infinitesimal  

mass  element of the moving gyroscope body around any point 1O  in the orbital plane  could be 

written as per Eq. (7)  

 

   
  

3

x
P mu

                                                                 
(19)

   

     
y

P mu /

                                                                   
(20) 

 

where  u    is large,  /u   is very small,  m  is the limiting gravitating (or inertial) mass element of 

the infinitesimal  body element of the gyroscope  at rest in free space as defined in Eq. (4) . 

Therefore, from Eq. (20), we find that the resultant direction (
1O R) of momentum  of that 

infinitesimal mass element at 
1O  

аТll make an anРle θ2 with  
1 1O X  axis drawn parallel to OX at  

1O  such that  

3

2

y

x

P u
k

P u
   /

.                                                      
   (21) 

 

But, the infinitesimal mass element of the gyroscope body at 1O  is constrained to move 

with the centre of the gyroscope towards 1 1O P  parallel to OP such that  
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u
X O P

u
   /

                                                 
 (22) 

 

Now the centre of the gyroscope is constrained to move in its orbit, but the axis of the 

gyroscope could tilt in any direction.  Therefore, infinitesimal body element of the gyroscope near 

the point O1 will be displaced towards O1X1 parallel to OX in the orbital plane. If this displacement 

does not change the angular momentum of the spinning gyroscope, the angular displacement in 

the orbital plane could be measured by  

 

     

3

2 1
( 1)

u
d k

u
      /

                                            
(23) 

 

  
Now in the case where OP is extremely small, we may consider that the magnitudes of 

both the velocity components of the instantaneous motion of the spinning orbiting body  at the 

points O and P are roughly the same. Therefore, at the point P, the velocity components of the 

motion of the centre of the electron read 

 

cos
x g

u u r  
                                                    

(24)
       

/ sin
y g

u u r  
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аСere į Тs tСe anРle tСat tСe arМ τP subtenНs at tСe Мentre (not sСoаn Тn (FТР.1Ψ anН ω Тs tСe anРular 

velocity of the orbiting  gyroscope  in its orbit having radius r ,  from which we get  

 

 

/

tan
u udt

u r
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In case the spinning axis of the gyroscope is not normal to the orbital plane,  it should 

precess  in the orbital plane with angular velocity      
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d u u u

dt rc c

      
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 аСere ωg is the angular velocity of the gyroscope in its orbit.
                                             

,                                       

In case of an orbiting rigid spinning electron, the momentum equation is Eq. (1) instead of 

the Eq. (7) and therefore, in that case precession velocity  of the gyroscope in the orbital plane   

should be  

 

 

2 2

2 2

1 1
( )

2 2e O e

d u u u

dt rc c

      
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where ωe is the angular velocity of the electron  in its orbit.
   

(b) Tangential precession   [3, 5]   

In the tangential plane (Fig. 2), the centre of the gyroscope is moving towards  the  North 

ON with a velocity u. The Coriolis average velocity  (0+ 2ωEusinφdt)/2= ωEusinφdt is towards the 

East.  Carried with the centre of the gyroscope, the resultant direction of motion of  an  infinitesimal 

mass element of the gyroscope near the point O1  makes an angle θ1 with  O1N1 parallel to the 

North ON in the tangential plane such that  

 
1

(sin )
(sin )E

E

u dtu
dt

u u
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(29)
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Fig 2. Tangential (Coriolis) Precession of an orbiting spherical rigid spinning gyroscope. 

 

 
Now the x- component  (towards O1N1) and the  y- components (towards O1W1)  of  the   

momentum  of that  infinitesimal mass element  of the moving gyroscope  around the point 1O  in 

the tangential  plane  could be written as per Eq. (7) as given in Eq. (20) 

 

3xP mu    yP mu/

 

 

Therefore,  the resultant direction of momentum  of that  infinitesimal mass  element of the 

gyroscope near the point O1 will make an angle θ2 with  O1N1 parallel to  ON , the North  in the 

tangential plane  such that    

3 3

2
(sin )

y

E

x

P u
k k dt

P u
    /.

                                        
(30)

    

 

Therefore, infinitesimal mass element of the gyroscope near the point O1 will be displaced 

in the tangential plane towards O1N1 parallel to ON, the North.  If this displacement does not 
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change the angular momentum of the spinning gyroscope, the angular displacement in the 

tangential plane could be measured by  

 

3

2 0

3
( 1) (sin ) (sin )

2E E
d k dt dt                                

(31)           

                          
 

In case the axis of the gyroscope is not normal to the tangential plane, the gyroscope will 

precess in tangential plane with the angular velocity
  
  

 

3
( ) (sin )

2g T E

d

dt

                                                    (32)                    

   
 
The magnitude and direction of this precession change with latitude. When averaged over 

the orbit [3],  the result   is equatorial precession as per the following equation  

 

         

2

2

3
( ) ( )

4g T g Eq

u

c
  

E
Ω Ω ω

                                                
(33) 

 

The magnitude of Coriolis acceleration may decrease by some factor   (averaged over the 

orbit) which should originate from the environmental and experimental conditions  that the moving 

gyroscope faces in its orbit.  The Earth possesses magnetic field and it should have some 

contribution  to the precession of the gyroscope as the gyroscope contains charges and currents   

and shielding could not eliminate the full effect. Therefore, Eq. (33) should now be changed to  
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Where a is the contribution to precession due the residual  magnetic field of the Earth 

affecting the gyroscope. 
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7. The Experiments of Michelson-Gale and Bilger et al. 

The Earth carries electromagnetic fields along with it and thereby light at the vicinity of its 

surface should be affected by the  Coriolis force due to the spinning  of the Earth .  

Let us choose a point O  with the latitude 0  North  and construct a tangential plane at this 

point. Now let us fix a Cartesian co-ordinate system in the plane such that OY represents the North 

and OX represents the East. Now suppose that the Earth is not spinning and an element of light 

beam is arranged to move from a point P in the OY axis at the instant 0t   in a small circular 

motion in the clockwise direction such that at the time t  it touches the point Q in the OX axis and 

say OP OQ r   .That is when 0, 0,t x y r    and when , ,t t x r y o   . 

Now suppose that the Earth spins  with an angular velocity . Then the Coriolis force due 

to the spinning  of the Earth should deflect the beam mainly eastwardly and the beam will not 

touch the point Q. Instead it will touch a point R very adjacent to the OX axis. Now for a rough 

calculation of the distance OR, let us consider the motion of the beam on the OY axis with a 

veloМТtв ‘М’ from tСe poТnt P to tСe poТnt τ НТreМtlв. In tСТs Мase, ωorТolТs ForМe Fx is acting on the 

beam  and so we may write, 

2

2
2 ( )sin 2 sin

x

d x
F c

dt
       

                                     
(35)

       

                  

Remembering the initial condition    t=r/c ,  we have,  

 

2 sin /x r c                                                  (36)   

               

This means that the beam will be deflected towards east by the amount x as per Eq.(36).  
 

Now Let the beam  be  divided at P in two parts and each part  is  made  to travel in clockwise and 

anticlockwise  directions in a circular path of radius  r  to meet at P again.  Due the Coriolis action 

on the beams , the approximate radii of  both the beams should be respectively 

 

2( ) sin /OR r r c                                      (37)                                       

2 sin /r r c                                              (38)           

The Path difference       
2 2

2 ( sin ) 2 ( sin )
r r

r r
c c

       4
sin

A

c


      
           (39) 

From the last two equations we have for one complete rotation 
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2

4
sin

A
t

c
 

                                                   
(40)

       
  

Fringe shift
4 sinA

c





                                                 

(41)
                

        
 
                  

 
 

where A is the area of the circle . Fringe shifts relating to Equation (44) seem to be verified 

by the Experiments of Michelson-Gale - Pearson and Bilger et al [6].  

 

8. Conclusion 

Our study shows that all general relativistic phenomena could easily and rationally be 

explained from the consideration of classical physics and thereby exposes the uselessness of the 

general relativity theory in the domain of gravitational physics. 
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