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Curvature of the trajectory of the electromagnetic waves caused by the gravitational fields 

of massive space objects is studied well enough as this refers to one of the three predictions of the 

general theory of relativity. Recently, this topic is related to the much-discussed hypothesis of the 

existence of the dark matter and energy [1]. At the same time the moving interstellar and 

intergalactic medium can also bend the path of light rays that is a source of additional amendments 

in determining the radius of the orbit of the star. 

The movement of the medium leads to the amendments in the phase velocity of the 

electromagnetic radiation, in the propagation time of the electromagnetic radiation between the 

transmitter and the receiver, and it can also lead to the angular velocity aberration radiation. 

In that case, if the space velocity of the medium is inhomogeneous and the speed alteration 

therein corresponds to a gradient, bending of the electromagnetic radiation trajectory in the 

medium arises. 

Let us consider the propagation of the plane monochromatic wave in a moving medium in 

a geometrical approximation, when the characteristic size of the inhomogeneities of the medium 

is much greater than the wavelength of the radiation. At the same time we assume the very 

environment as a uniform one, while non-uniformity caused by the gradient of the velocity of its 

movement. The most interesting is the two-dimensional case and the three-dimensional 

generalization can be easily obtained by using the principle of superposition. 

Let us assume that in the plane XOZ propagates the electromagnetic wave in the optically 

transparent medium with a velocity gradient. 
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The process of propagation of the radiation can be represented as a series of the beam 

refractions at the boundary of layers and within the layer the velocity variation of the medium can 

be ignored. 

Let an electromagnetic wave falls at the point 0 on the boundary between the medium with 

a refractive index 𝑛1 at an angle 𝜗0 and than refracted at an angle 𝜗2 in the medium with a refractive 

index 𝑛2. Each i-th point of the trajectory corresponds to the very radius vector 𝑟 𝑖. The increment 

of the refraction angle is denoted by 𝑑𝜗2. Let 𝑢⃗  be the element of the displacement of the wave 

vector in the moving medium (ray vector) 𝑢⃗ =
𝑑𝑟 

𝑑𝑠
. Assume that at some point 𝑂𝑘 is placed the 

center of the propagation trajectory curvature of the radiation in the medium.  Then the value 𝜌𝑘 

is a radius of the trajectory curvature. 

Let us obtain an analytical expression for the curvature of the trajectory of the radiation 

within the movable medium, taking into account relativistic terms.  

By definition, the expression for the curvature of the trajectory of the radiation in the 

medium can be written as 
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During the propagation of the beam from point 0 to point 1, the wave vector will turn at an 

angle 
2

2d d r ds 
. 

To use this expression we use the dependence of the wave vector of the refracted wave 

from the coordinates. 

 The wave vector while shifting from point 0 to point 1 will vary by the value of 

2 2 2(1) (0)dk k k  . The rotation of the wave vector 
2k  at an angle 2d  depends from the angle of 

refraction 2  
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The variation of the wave vector 
2k  occurs only due to the changes in its projection on the 

axis OZ, because 2zk  is a tangential invariant, so the expression for the curvature takes the 

following form: 

 2 2

2

sin
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dk
k

k dS
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      (3) 

 

We take into account that the derivative of the scalar function in the direction of 𝑢⃗  is 

determined according to the formula 
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In this case, the first two derivatives are equal to zero 
 

 
 
2 2 0z zk k

x y . 

That is why the expression for the curvature will be the following: 
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To determine the projection of the wave vector 
2k  we use the solution of the dispersion 

equation obtained in [2] 
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where  
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Assuming that the normal velocity of the boundary is absent, and 1 0 20, I       , 

so let us rewright the expressions  for d  and  2 ,t d  as 
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Then the expression for the normal projection of the wave vector 2zk  will be simplified 

as 
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The derivative of 2zk  with respect to z will have the form 
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For the trajectory curvature of the radiation we can obtain 
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Using these approximations 
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And the expression for the curvature will be the following  
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Note that the curvature of the trajectory has a nonzero value in the absence of rotary motion, 

such as shear flow.  

In the particular case of rotational motion of the medium 
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Then for the curvature of the trajectory we obtain  
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For the angular deflection of the beam on the track with length S, we write 
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Fig. 1. The dependence of the curvature radius of the radiation trajectory in a rotating medium 

from the frequency of rotation 

 
The expression obtained in the first approximation corresponds to the work [3]. The main 

difference is that the curvature of the trajectory and the angular deviation depends on the velocity 

gradient. 

Fig. 1 shows the dependence of the curvature radius on the rotational speed of the medium 

on the basis of numerical calculation using the formulas (9) - (11). The calculations were 

performed with the following parameters 
2 0

1.7643; 60 ; 532n      nm; 0 0.1r  m, 

allowing comparison with direct numerical calculation [4, 5]. 

At low speeds, the radius of curvature tends to infinity, while at large - there is a significant 

non-linearity 𝜌𝑘(𝜔), which reflects the importance of the relativistic terms. It follows from the 

calculations we made that the effect of the curvature of the trajectory in the medium with a velocity 

gradient is the effect of the first order with respect to u/c. 
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