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The source of the anisotropy of the background radiation are the cosmological perturbations from a length of wave 

comparable or bigger Hubble radius. Such long-wave perturbations have come from an era when the Universe was 

much younger. The initial perturbations had the quantum mechanical nature and, subsequently, amplified an external 

gravitational field. Thus, the scalar and tensor perturbations are the source of information on the early Universe. 

In this article the origin of the initial perturbations is considered and settled an invoice the power spectrum and the 

spectral indexes of the scalar and tensor perturbations within the exact solutions of the equations of dynamics of a 

scalar field. 
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Introduction 

The cosmological perturbations are a source of the evolution of large-scale structure of the 

Universe. Generation of initial perturbations has the quantum-mechanical nature. The length of a 

wave of perturbations has strongly grown since generation, but other physical characteristics of 

the perturbations can still support the traces of their origin. The quantum mechanical generation 

of the cosmological perturbations depends only on existence their quantum fluctuations in the 

initial point and interaction of the perturbations with a variation gravitational field of the 

homogeneous isotropic Universe. 

Gravitational waves are a valuable source of information about the stage of early evolution 

of the universe. State of accelerated expansion of the universe in the early stages describes the 

theory of inflation [1]. Inflationary cosmology explains the origin of the primary irregularities and 

predicts their range [2]. Thus, it is possible to test the theory by comparison with observational 

data. 

According to the theory of inflation derived from primordial quantum fluctuations. These 

fluctuations have significant amplitude of the scale of the Planck length and for inflation they 

approached the scale of galaxies with almost the same amplitude. Thus, inflation connects the 

large-scale structure of the Universe with a microscopic scale. The resulting spectrum of 

inhomogeneities is essentially independent of particular scenarios of inflation and has a universal 

form. This leads to unambiguous predictions for the spectrum of the CMB anisotropy [2]. 
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Inflation model are defined view of the effective potential  V  . In this case, the potential 

is controlled by a scalar field , which rolls down to the minimum  V  . The end of inflation 

constitute a breach of the slow roll, field oscillates around the minimum and process of reheating 

begins. This process involves several different stages, such as the collapse of the inflation 

condensate (preheating), the production of particles of the standard model and thermalization [2]. 

The source of the CMB anisotropy are cosmological perturbations with wavelengths 

comparable to or greater than the Hubble radius. Initial perturbations have quantum-mechanical 

nature, and subsequently amplified by parametric external gravitational field. The wavelength of 

the perturbation has grown since the generation, but other physical characteristics of the 

perturbation may still bear traces of their origin. Quantum-mechanical generation of cosmological 

perturbations depends on the existence of quantum fluctuations in the inflationary stage and 

interaction of disturbances with variable gravitational field of a homogeneous isotropic universe. 

Strong variable gravitational field of very early Universe plays the role of the pump field. 

It replaces the zero-point quantum perturbations and enhances them. The initial quantum state of 

eaМС moНe НТsturbanМes Тs transformeН as a result of tСe quantum meМСanТМal SМСröНТnРer 

evolution to the "frozen" vacuum. 

 

Anisotropy of the microwave background 

The Universe just before recombination is a very tightly coupled fluid, due to the large 

electromagnetic Thomson cross section. Photons scatter off charged particles (protons and 

electrons), and carry energy, so they feel the gravitational potential associated with the 

perturbations imprinted in the metric during inflation. A density of baryons (protons and neutrons) 

does not collapse under the effect of gravity until it enters the causal Hubble radius. The perturbation 

continues to grow until radiation pressure opposes gravity and sets up acoustic oscillations in the 

plasma. Since densities of the same size will enter the Hubble radius at the same time, they will 

oscillate in phase. Moreover, since photons scatter off these baryons, the acoustic oscillations occur 

also in the photon field and induces a pattern of peaks in the temperature anisotropies in the sky, 

at different angular scales [3]. 

When the temperature drops and the expansion of the universe cools. Expansion rate is 

much slower characteristic time of establishment of equilibrium in hot plasma, so the particles in 

it are in thermodynamic equilibrium. One of these particles is relic photons. 

Although photon propagates at the speed of light, in hot dense plasma due to scattering by 

electrons photons spread much more slowly. When the universe is expanding so that the plasma 
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cools to a temperature of recombination, the electrons begin to connect with protons to form 

neutral hydrogen, and photons begin to spread freely. 

Cosmic microwave background radiation has a unique property. Its temperature is 

remarkably isotropic. It is isotropic with precision. Nevertheless, there is a slight anisotropy. 

Anisotropy is due to the difference of temperature in different directions in the sky. Its magnitude 

is equal to about 3 mK. These kinetic components of the CMB anisotropy, which is called dipole 

anisotropy. 

In addition to the kinetic component, there are potential members in the CMB anisotropy, 

owe their origin to the gravitational field of very large scale, which is comparable to the particle 

horizon, in other words, the distance to the last scattering neighborhood.  

Consider the basic equation describing the anisotropy of the cosmic microwave 

background radiation, and the basic physical effects that it causes. The equation of change of 

temperature in the direction of e has the form 

 

0 ( , ( ))( ) 1 1
( )
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The first term in this equation describes the Sachs-Wolfe effect, which was predicted in the 

early 60s Sachs and Wolfe lies in the fact that photons moving in an alternating potential or gain 

or lose energy. 

The second term is due to adiabatic preload radiation before the era of recombination in 

areas of high and low density Silk effect. 

The third term owes its origin to the Doppler effect, which is a scattering of photons by 

moving adiabatic perturbations of free electrons before and after recombination. 

The growing mode solution of the metric perturbation that left the Hubble scale during 

inflation contributes to the temperature anisotropies on large scales as 
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lma - multipole coefficients, lmY are the usual spherical harmonics.  
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We can now compute the two-point correlation function or angular power spectrum  C   

of the CMB anisotropies on large scales, defined as an expansion in multipole number  
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where  coslP   are the Legendre polynomials, and we have averaged over different universe 

realizations. Since the coefficients lma  are isotropic, we can compute the 
2

l lmC a   as 
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where  0lj k  are spherical Bessel functions and 0 is the distance to the surface of last scattering.  

In the case of scalar metric perturbation produced during inflation, the scalar power 

spectrum at reentry is given by     12
0

sn

Sk A k  . In that case, one can integrate (7) to give 
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The tensor angular power spectrum can be expressed as 
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where x k and g is the primordial tensor spectrum.   

The ratio of the tensor and scalar contribution to the angular power spectrum is 

   T S
l lr C C . Thus, the tensor angular power spectrum can be calculated as   T S

l lC rC . 

 

Metric perturbations 

During inflation, quantum fluctuations of a scalar field will create metrics perturbations. 

Let's write down the metric in linear approximation, taking into account the scalar and tensor 

perturbations and the field perturbations [4] 
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The functions of scalar perturbations  , , , ,iA x B D E  depend on calibration, ij  is a 

metrics of space of constant curvature. The gauge-invariant tensor perturbations matches 

transverse and traceless gravitational waves 0i
i ij ih h   .  

In the article [5] the exact expressions for the power spectrum and the spectral indexes of 

the scalar and tensor perturbations were obtained. 
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whereH is the Hubble parameter, PM - Plank mass, 28 8 1Pc G M    .  

 

The basic equations 

TСe equatТons of a sМalar fТelН’s НвnamТМs Тn tСe flat FrТeНman-Robertson-Walker Universe 

are written as follows 
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with the equation of state  p w t  , where  21

2
p V   is the pressure,   21

2
V    - 

energy density and  w t  is the state parameter.  

ψeМause of tСe nonlТnear МСaraМter of EТnsteТn’s equatТons, eбaМt solutТons to tСe sМalar 

cosmology equations can only be found using simple methods for very particular potentials. But 

it's difficult to find exact solutions for more appealing potentials. The slow-roll approximations is 

the usual procedure to receive the approximate solutions of these equations [5] 
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A consequence of the system of equations  5 6 can be written as 
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Then we write the state parameter  w t as follows 

 



Proceedings of International Conference PIRT-2015 

150 

 

   
 

       22

2
2

1
/2 42 1 1 1

1 3 3 6

2

V H t dH d r
w t

H t H
V

    
 

           
 

 

   

One can obtain from this equation 
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The solution of the equation  8  allows getting the Hubble parameter, the potential and 

the scalar field from  r  : 

  ( ) exp ( )H A r d          9  

  2( ) 3 8 ( ) exp 2 ( )V A r r d                    10  

 

   4 exp ( )A r r d           11  

 

The exact solutions of the scalar field's dynamical equations can be obtained  for different 

cosmological models by choosing of the  r  . The power spectra and the spectral indices of scalar 

and tensor perturbations and the two-point correlation function of angular CMB anisotropies on 

large scales in the models of cosmological inflation can be calculated from  2 5 on the basis of 

these exact solutions. 

 

The models of cosmological inflation 

Consider the constant tensor to scalar ratio   2r B   and obtain the solutions of  9 11  
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The resulting solutions correspond to the exponential inflation[6] 
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that corresponds to the model with spontaneous symmetry breaking[7] 

When 
2

2 2
1, ( )
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B

     the solution of the system 9 11 is defined as 
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This is inflation with polynomial potential[8]. 

 

The quintessential inflation 

Consider the tensor to scalar ratio as 2( ) tanh ( )r A   . The solution of the system  9 11  

gives the following expressions 
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This is the quintessential inflation[9]  

 

0
( ) A AV V Fe Ge      

 



Proceedings of International Conference PIRT-2015 

153 

 

with 2 2

0 2 2

6 12
4 1 , 2V C F

B
G C

B

              . 

In case of 6B  the potential is 2( ) 8V C   which corresponds to the de Sitter 

solution [10]. 

The amplitude and spectral energy density parameter of the relic gravitational wave are  

defined as [11] 
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where infH and 0H are the Hubble parameters in the era of inflation, and in the modern era. 
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аСere matter, raНТatТon anН kТnetТМ enerРв НomТnateН epoМСs are representeН bв “εD”, “RD” 

anН “kТn” respeМtТvelв. 0m  and 0r  are the present values matter and radiation energy density 

parameters respectively. reheating temperature and Hubble parameter are represented by rhT  and 

rhH  respectively and we have taken reheating temperature and Hubble parameter approximately 

same as the temperature and Hubble parameter at the end of inflation. 

 

The possibilities of experimental detection of gravitational waves 

One of the promising methods for increasing the sensitivity of gravitational antennas in 

high-frequency part of the spectrum is the use of low-frequency optical resonance (LOR) 

phenomenon, whose presence in the Fabry-Perot interferometer is set in the works[12] 

The paper [13] shows that the minimum energy density of gravitational waves that can be 

detected by using a low-frequency resonance in the optical Fabry-Perot interferometer can be 

estimated by the formula 
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where  - phase shift describing the setting of the interferometer c - the speed of light, T time 

averaging of the spectral density,   - loss per cycle reflections,  - Planck constant, k - wave 

number, 0W - the power of monochromatic laser light, f - frequency of the gravitational waves. 
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Fig. 1. The energy density of gravitational wave  GW f  for different models. 

 

Figure 1 are graphs of energy density of gravitational wave for different models. The 

same graph shows the dependence of the minimum detectable energy density of gravitational 

waves for a variety of experiments and in the case of low-frequency optical resonance. It can be 

seen that at high frequencies in the model of quintessential inflation with the potential  12 for 

high frequencies GW increases. 

The values of the frequency and the energy density of relic gravitational waves is limited 

by conditions[14] 
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Conclusion 

In tСТs аork аe аere НerТveН eбaМt solutТons of sМalar fТelН’s НвnamТМal equatТons for tСe 

different models of inflation. Also presented the possibility of experimental detection of 

gravitational waves in the high frequency part of the spectrum using a low-frequency optical 

resonance phenomenon in the Fabry-Perot interferometer. The model parameters is limited by 

the influence of relic gravitational waves on the rate of primordial nucleosynthesis. 
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