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1. Spectra associated to m-th root relativistic Finsler structures  

The class of m-th root Finsler metrics provides for General and Special Relativity (the SRT 

m-th root models promoted by Pavlov ([28-30]), Chernov ([19]) and Bogoslovsky ([11]), and the 

Roxburgh spherical symmetric models ([34]), models for ecology ([1]), and extensions for HARDI 

(Higher Angular Resolution Diffusion Imaging, introduced by L. Astola & al., [2]). Moreover, 

some of these metrics alternative non-standard models for Special Relativity, a fruitful subject of 

research of the last decade. 

We shall briefly present first the minimal basics of Finsler structures. Let (M, F) be an  

n-dimensional Finsler or pseudo-Finsler space [27, 11], consisting of a manifold M and a smooth 

non-negative function (called Finsler norm) F defined on TM, which satisfies the following 

requirements: 

a) F is continuous, smooth on the slit tangent space; 

b) F is positive homogeneous in the directional argument y, and 

c) the halved y-Hessian of F2 , the fundamental metric tensor field is positive-definite. 

These assumptions may still be relaxed, by dropping the positivity, the extent of the 

domain, and by replacing the positive-definiteness with the non-degeneracy and stable signature. 

Let further  
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be the components of the Finsler metric tensor and let  
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be the coefficients of the Cartan symmetric tensor. Due to the positive 1-homogeneity of F, by 

using the Euler relations, one has:  
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It is known that the role of the Cartan tensor is important for identifying the particular 

structure of a Lagrange space (M, L), since for  
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completely symmetric and satisfying the property of null y-1-index transvection, the space 

becomes Finsler, and for a Finsler space with Cijk = 0, the space is Riemannian (or, in the case of 

pseudo-Finsler spaces – pseudo-Riemannian).  

In the following we mainly describe the spectral data of three types of symmetric tensors:  

the Cartan tensor for the Berwald-Moor structure  

the metric tensor of the Berwald-Moor structure  

in brief, the five attaМСeН sвmmetrТМ tensors relateН to tСe ψerаalН-Moor or, Chernov and 

Bogoslovsky locally Minkowski Finsler metrics of m-th root type, obtained by polarization 

(recently described in detail in [3]),  

 

a) the 4-d Berwald-Moor m-th root norm and associated tensor  
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b) the 3-d Berwald-Moor m-th root norm and associated tensor:  
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b) the 4-d Chernov m-th root norm and associated tensor:  
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c) the 3-d Chernov m-th root norm and associated tensor (Minkowski-Lorentz framework):  
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d) the 3-d Bogoslovsky m-th root norm and associated tensor:  
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2.  Basics on the spectral theory of covariant symmetric tensors ([3]) 

Consider a real m-МovarТant sвmmetrТМ tensor fielН T on tСe flat manТfolН V=Rn . We say 

tСat a real Ȝ a Z-eigenvalue that a vector y is an associated Z-eТРenveМtor to Ȝ, Тf tСeв satТsfв tСe 
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system:  

 

1 ;m
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where we denoted  
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In tСe Мompleб Мase, one sТmplв Мalls Ȝ anН y eigenvalue and eigenvector, respectively.  

δ. QТ НefineН tСe folloаТnР alternatТve for speМtral objeМtsμ  

χ real number Ȝ Тs an H-eigenvalue and a vector y
 
is an H-eТРenveМtor assoМТateН to Ȝ, Тf 

they satisfy the homogeneous polynomial system of order m-1:  

 
1 1( ) ( ) .m m

y k k
T y   

 

In tСe Мompleб Мase, Ȝ anН в are МalleН E-eigenvalue and E-eigenvector, respectively.  

Regarding the spectra consistency, it is known that the Z- and the H-spectra are nonempty 

for even symmetric tensors, and that a symmetric tensor T Тs posТtТve НefinТte/semi-НefinТte Тff all 

its H- (or Z-) eigenvalues are positive/non-negative.  

In general, while considering an m-multilinear symmetric form T НefineН on V, we note 

tСat tСe НefinТtТon of Z- and H-spectral data reveal certain relations between the poly-angles 

determined by the poly-scalar product T and the classic Euclidean and Riemann-Finsler geometric 

structures, as follows.  

a) DenotТnР bв į tСe EuМlТНean Тnner proНuМt, tСe Z-eТРensвstem for Ȝ anН в Мan be 

written as: 

 
1

2
( ,z) ( , ), , 1m n

y
T y z z y      

 
i.e., the (m-1)-polyangle determined by the poly-scalar product T and the classic Euclidean inner 

product, based on Z -eigenvectors of T , are homothetic while applied to Euclidean unit vectors.  

b) Denoting by C the Riemann-Finsler multilinear symmetric form associated to the  

m-pseudonorm  
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we note that the H-eigensystem can be written as:  
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2
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i.e., the (m-1,1)-polyangles of the poly-scalar products T and C, based on the  

H-eigenvectors of T, are СomotСetТМ for EuМlТНean unТt veМtors. TСe eТРenvalues НefineН bв T can 

be characterized in terms of homothety of linear forms, as follows ([3]): 

a) Consider the covector-providing mappings  
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TСen tСe real sМalar Ȝ Тs a Z-eigenvalue and the unit-vector y
 
is an associated Z-eigenvector iff  

 

* *
( ) ( ),T y y   

 

Т.e., tСe tаo НefineН bв y Riesz linear forms attached to T* anН į are СomotСetТМ аТtС faМtor Ȝ.  

b) The extended m-th root of sum of m-th powers of components Riemann-Finsler 

metric provides the associated mapping  
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TСen tСe real sМalar Ȝ Тs an H-eigenvalue of T with associated H-eigenvector y if  

 

* *
( ) ( ),T y C y  

 

i.e., the two Riesz-type linear forms attached to T and C НefineН bв y are СomotСetТМ аТtС faМtor Ȝ. 

Similarly, in the complex case, the last property can be rephrased for E-spectra.  

We direct the reader for details on the asymptotic rays, recession vectors, the degeneracy 

sets, the best rank-I approximation and the Z- and H-spectral data for the five structural a) - e) to 

the article [3]. It should still be noted, that while the Berwald-Moor fundamental tensor allows 

eigensystems with tractable resultants, the eigendata for the Chernov and Bogoslovsky tensors are 

by far more untractable and complex by structure. E.g., even for n=3, in the Chernov ([19]) case, 

one gets the Z-spectral data ([3]): 
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while for the Bogoslovsky tensor, just a partial result shows that the Z-spectral equations for 

v=(a,b,c) have the form 
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anН aНmТt as partТМular solutТon Ȝ = βκ/γ anН one РeneratТnР unТt eТРenveМtor y=(1, 1, 1Ψ/√γ. 

We shall further present the solutions for the spectral equations for Berwald-Moor Cartan 

tensor. Considering the slit tangent bundle of the manifold M endowed with Euclidean structure 

РТven bв tСe flat metrТМ tСe speМtral Z-
 
and H-/E- equations for the Cartan tensor C respectively 

have the form 
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аСere Тs a loМal vertТМal veМtor fielН. In particular, in the Berwald-Moor n-dimensional case we 

have (1978, Matsumoto-Shimada) 
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By denoting  

 

1

/ , *
n

i i i k

k

g f y g g


  and  
# 2

1

( )
n

k

k

g g


  

 

the Z-spectral equations for the metric g of the Berwald-Moor space have the form ([4]): 
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аТtС ț = 1 for Z-speМtrum anН ț = β for H-/E-spectra. In particular, for n=2 the Z-equations are 

much simpler,  

 

0 ( ) , 1, ,i i kg g i n    

 

the space is pseudo-Euclidean of Minkowski type and hence has vanishing Cartan tensor. Then 

the only Z- and H-/E-eigenvalue of the Cartan tensor is the null one. Further, for n=3 and denoting 

(a,b,c)=( g1,g2,g3,), the system of three Z- and H-/E-equations have respectively the form:
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where by R 

 
we denote the simultaneous rolling of the  triples (a,b,c) and (1,2,3).  

For n=4, by denoting (a,b,c,d) = (g1,g2,g3,g4), the systems of four equations have the form: 
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where by R
  
we denote the simultaneous rolling of the triples (a,b,c,d) and (1,2,3,4).  

 

Remarks. We note that, due to the properties of the Finslerian Cartan tensor, all spectra admit the 

real eigenvalue zero, with the associated family of Z-eigenvectors containing the two unit vectors 

attached to the supporting element y, and the family of  

H-eigenvectors containing the eigenspace Span{y}. The complexity of computations, which 

address the Theory of Resultants related to higher-order polynomial systems of equations, often 

require support or at least accurate validation by means of symbolic software. Using the Maple 15 

environment, the spectral N-way theory is tractable for our cases ([4]), as described in the 

following. 

For the Berwald-Moor 3-d case, there exist points at which the Cartan tensor admits a 

Candecomp/Parafac best rank-I approximation (relative to the Euclidean-originated Frobenius 

norm).  σamelв, Тn eaМС EuМlТНean fiber at (x,y) -with ||yее=1/(Ȝ√γΨ on tСe trТseМtrТб, tСe Z-spectral 

data is given by:  

                                                   
0

ZS    {(1,1,1)/ 3},  



Proceedings of International Conference PIRT-2015 

75 

 

1/(3 2 )
{(2,1,1)/3 6 )}Z

y
S 
     

  

denotes complementing the set with the vectors obtained by complete permuting the components. 

In this case, the Cartan tensor admits six distinct Candecomp (best rank-I) approximations:  
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For n=3, there exist points at which the Cartan tensor admits only purely complex  

HO-SVD decomposition. Namely, in each EuМlТНean fiber at (x,y) - with  y=(1,1,1) on the trisectrix, 

there exists only one H-eТРenvalue (Ȝ=0Ψ аТtС all H-eigenvectors located along the trisectrix, three 

distinct E-eigenvalues (one real and 2 complex conjugate), each allowing three complex 1-

dimensional eigenspaces. We have  
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For n=4, there exist points at which the Cartan tensor admits a Candecomp/Parafac best 

rank-I approximation (relative to the Euclidean-originated Frobenius norm). Namely, in each 

EuМlТНean fiber at (x,y) -with y on the quadrisectrix, we have:  
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As well, for n=4, there exist points at which the Cartan tensor admits only a purely complex 

HO-SVD decomposition. The H-/E-speМtral Нata for tСe ωartan tensor Тn tСe fiber at (x,y) -with 

y=(1,1,1,1) is given by: 
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For the metric tensor gij the Z- and H-/E-eigendata are the common eigendata of square 

symmetric matrices, and are given by the equations,  
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Since [g] is real and symmetric, it is diagonalizable, its eigenvalues are all real, the 

eigenspaces are mutually orthogonal, and its signature is (+,-,...,-). The matrix admits an 

orthonormal basis made of eigenvectors. Then for n=2, we have [g] =(1/2)[e2,e1], the spectral data 

are 

 

1
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and g admits two distinct Candecomp rank-I approximations, 
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For n=3 and n=4, the matrix of the fundamental tensor is given by 
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Besides the applications in Relativity of the Berwald-Moor, Chernov and Bogoslovsky m-

th root models which presented above, similar models have been investigated as well by  

P.L. Antonelli ([1]) and by a group of scientists from University of Eindhoven, both focusing on 

the behavior of the associated Finslerian geodesics. An anisotropic metric, introduced to model 

General relativity was proposed in 1992 by Roxburgh ([34]): 

 
1 4 1 2 3 2 4 2 2

2 2 3 2 4 2 2 1/4

( ; ) [a( ) (y ) ( ) (y ) (( ) ( ) )

( ) ((y ) ( ) ( ) ) ]

F x y b y yс y y 


     
      

where 1 2 3 4( , , , ),x x x x x and 2 2 3 2 4 2( ) ( ) ( )x x x      

 

A relatively recent Finslerian model was proposed by Bogoslovsky and Goenner ([15], 

[23]), whose spectral theory is subject of present and further research. 

 

Conclusions 

The spectral theory associated to several types of Finsler metrics, all of m-th root type was 

described. The (covariant) metric tensor fields, the Cartan tensors and the fundamental m-th root 
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tensors were investigated: the spectral data were determined, and the outcoming impact of the 

results on the indicatrix theory of the models and on the related spectral decompositions was 

pointed out. Further research have in view insight on several alternative models, provided by the 

Finsler-type Bogoslovsky-Goenner, Randers and Shen structures. 
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