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The present work is a survey of results from the spectral theagvafiant symmetric tensors (n-way arrays),
which mainly deal with the fundamental geometric objects from anfsotgeometric models recently proposed by
Russian specialists in Special Relativity. These objects play a major roledtr@pic structures, being provided by
norms and by their related energy scalar fields; in this framewerkstudy from spectral point of view the m-th
root n-way forms, the fundamental metric and the Cartan tensor fieldesaf models.

The determined spectral data prove to be useful in describing propertiesnofichérices of the anisotropic
structures, in pointing out their asymptotic properties and in constructingab&st approximations of the main

covariant tensors - which provides both simple and consistent estimaties éoiginal anisotropic structures.
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1. Spectra associated tm-th root relativistic Finsler structures

The class oim-th root Finsler metrics provides for General and Special Relativity (the SRT
m-th root models promoted by Pavlov ([28-30]), Chernov ([19]) and Bogoslovsky ([11]), and the
Roxburgh spherical symmetric models ([34]), models for ecology ([1]), and extensions for HARDI
(Higher Angular Resolution Diffusion Imaging, introduced by L. Astola & al., [2]). Moreover,
some of these metrics alternative non-standard models for Special Relativity, a fruitful subject of
research of the last decade.

We shall briefly present first the minimal basics of Finsler structures.MLeFY be an
n-dimensional Finsler or pseudo-Finsler space [27, 11], consisting of a maviitodd a smooth
non-negative function (calle#insler norn) F defined onTM, which satisfies the following
requirements:

a) F is continuous, smooth on the slit tangent space,;

b) F is positive homogeneous in the directional argument y, and

c) the halved-Hessian oF?, the fundamental metric tensor field is positive-definite.

These assumptions may still be relaxed, by dropping the positivity, the extent of the
domain, and by replacing the positive-definiteness with the non-degeneracy and stable signatur
Let further
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be the components of the Finsler metric tensor and let
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be the coefficients of the Cartan symmetric tensor. Due to the positive 1-homoger€ityyof

using the Euler relations, one has:
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It is known that the role of the Cartan tensor is important for identifying the particular

structure of a Lagrange spad#, (), since for

1 oL
CI’Y{ :_—k
4 0y'oy’oy

completely symmetric and satisfying the property of null y-1-index transvection, the space
becomes Finsler, and for a Finsler space With= 0, the space is Riemannian (or, in the case of
pseudo-Finsler spacegpseudo-Riemannian).

In the following we mainly describe the spectral data of three types of symmetric tensors:

the Cartan tensor for the Berwald-Moor structure

the metric tensor of the Berwald-Moor structure

in brief, the five attached symmetric tensors related to the Berwald-Moor or, Chernov and
Bogoslovsky locally Minkowski Finsler metrics of m-th root type, obtained by polarization

(recently described in detail in [3]),

a) the 4-d Berwald-Moom-th root norm and associated tensor
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)

Froe D=4y 77,7,

A %,for{i,j,k,]}={1,2,3,4}

ikl

b) the 3-d Berwald-Moom-th root norm and associated tensor:

)

Fre =370,

gkl

%,for{i, J,k}={1,2,3},0 —otherwise;

b) the 4-d Chernowmtth root norm and associated tensor:

F()= i/ VI T AV I I VTSI IV

)

B = l,for distinct {i,],k}c{1,2,3,4}

ijk 3 |

c) the 3-d Chernowth root norm and associated tensor (Minkowski-Lorentz framework):

)

E D=yt vy, +v.5,

ik

B. :%,for distinct {i,j}c{1,2,3}

d) the 3-d Bogoslovsky+th root norm and associated tensor:

)

F, (7)= {/ iy vy v,
%,for{i,j,k,]} ={1,2,3}

jikl

2. Basics on the spectral theory of covariant symmetric tensors ([3])
Consider a reain-covariant symmetric tensor field T on the flat manifold V=R" . We say

that a real A a Z-eigenvalue that a vectgris an associated-eigenvector to A, if they satisfy the
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system:

T, =y 8y y)=1,

where we denoted

m-1 __ Z - i
Ty - i,iz,...,imel,nT1'1'2...1'm Yi=Yi dx’.

m

In the complex case, one simply calls A and y eigenvalue and eigenvector, respectively.
L. Qi defined the following alternative for spectral objects:
A real number A is an H-eigenvalue and a vectgiis anH-cigenvector associated to A, if

they satisfy the homogeneous polynomial system of argkr

T, =A™

In the complex case, A and y are called E-eigenvalue an&-eigenvector, respectively.

Regarding the spectra consistency, it is known thaZttaed theH-spectra are nonempty
for even symmetric tensors, and that a symmetric téhsopositive definite/semidefinite iff all
its H- (or Z-) eigenvalues are positive/non-negative.

In general, while considering an-multilinear symmetric fornil defined on V, we note
that the definition of Z- and H-spectral data reveal certain relations between the poly-angles
determined by the poly-scalar prodiicind the classic Euclidean and Riemann-Finsler geometric
structures, as follows.

a) Denoting by & the Euclidean inner product, the Z-eigensystem for A and y can be

written as:

(T,"",2)=26(y,z),Vz R,

r,=1

I.e., the (n-1)-polyangle determined by the poly-scalar produanhd the classic Euclidean inner
product, based o4 -eigenvectors of , are homothetic while applied to Euclidean unit vectors.
b) Denoting byC the Riemann-Finsler multilinear symmetric form associated to the

m-pseudonorm
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F.(y)=% yl’" + ...+ynm

namely

C:i@)dei 2251'1...idej1 ®..Qd im,

i=1

we note that thél-eigensystem can be written as:

(T, 2)=2C(y"",2),YzeR",

v,=1

i.e., the m1,1)-polyangles of the poly-scalar productB and C, based on the
H-eigenvectors of, are homothetic for Euclidean unit vectors. The eigenvalues defined by T can
be characterized in terms of homothety of linear forms, as follows ([3]):

a) Consider the covector-providing mappings

5., T T, V)>T (V)

given by

5.(p)=) ydx',

iel,n
T(N= > T,, v,y d«

i )dy ek €10

Then the real scalar A is a Z-eigenvalue and the unit-vectpis an associated-eigenvectorft

T.(y)=216.(y),

i.e., the two defined by y Riesz linear forms attachedTeand & are homothetic with factor A.
b) The extendedn-th root of sum ofm-th powers of components Riemann-Finsler

metric provides the associated mapping
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C:T N ->TW), C.(y)=2, (y)"dx".

iel,n

Then the real scalar A is an H-eigenvalue ofl with associatedt-eigenvectoy if

T.(y)=AC.(y),

I.e., the two Riesz-type linear forms attached smdC defined by y are homothetic with factor A.
Similarly, in the complex case, the last property can be rephrasEesfctra.

We direct the reader for details on the asymptotic rays, recession vectors, the degenerac
sets, the best rank-I approximation andZh@ndH-spectral data for the five structural a) - e) to
the article [3]. It should still be noted, that while the Berwald-Moor fundamental tensor allows
eigensystems with tractable resultants, the eigendata for the Chernov and Bogoslovsky tensors &
by far more untractable and complex by structure. E.g., even for n=3, in the Chernov ([19]) case

one gets th&-spectral data ([3]):

S =1(p Pyt

teD= —\/g,\/g v=+2-3t*
S, = {HALD /2.

—t+v —tFv
and p, = >

where p, =

while for the Bogoslovsky tensor, just a partial result shows that-fpeectral equations for
v=(a,b,c) have the form

24abc +2(b*c +c*b) = Ja,
24abc+2(c*a+a’c)=Ab,
24abc+2(a*b+b*a)=Ac,

a‘+b*+ct=1,
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and admit as particular solution A = 28/3 and one generating unit eigenvector y=(1, 1, 1)/v/3.

We shall further present the solutions for the spectral equations for Berwald-Moor Cartan
tensor. Considering the slit tangent bundle of the manifold M endowed with Euclidean structure
given by the flat metric the spectral Z- andH-/E- equations for the Cartan tengorespectively

have the form
i rk i 1. ik iN2
C, 5 =af with|f| =1, €, £/ =AY,

where is a local vertical vector field. In particular, in the Berwald-Moar-dimensional case we
have (1978, Matsumoto-Shimada)

F* 2

1'/': i J T 1']')

2 o0.+0,+0,
= 1'F J ok iz_ ISt 51'1(5/1(51(1)'
ny y'y n n

ik
By denoting
g'=f"/y.g*=) g"and g"=} (g"y
k=1 k=1
the Z-spectral equations for the metgof the Berwald-Moor space have the form ([4]):

F? 1. ,- P
P [Z(g*)Z—ZHg*g -ng'n’(g )2]=l(g gk, i=1,n,

with k = 1 for Z-spectrum and k = 2 for H-/E-spectra. In particular, far=2 theZ-equations are

much simpler,
0=2(g'g"",i=1,n,

the space is pseudo-Euclidean of Minkowski type and hence has vanishing Cartan tensor. The
the onlyZ- andH-/E-eigenvalue of the Cartan tensor is the null one. Furthen=f®and denoting

(a,b,0)=( gLg%g3), the system of thre& andH-/E-equations have respectively the form:
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14
R :[3a%+6bc —(a+b+cy]=27Aas-F )

2

)

1N7
R:[3a°+6bc—(a+b+c)]=277a" 3/(}2/—)32
)

where byR we denote the simultaneous rolling of the tripkeb,€) and (1,2,3).
Forn=4, by denotind a,b,¢d) = (g,g2 g% &%), the systems of four equations have the form:

R :[-2(a+b+c+d)* +8(a’ + bc +cd +db)] =

1\3
:64za/-—§1%27f;,
b yy

R :[-2(a+b+c+d)* +8(a° + bc+cd + db)] =

o)
=64ﬁaﬂ[——;7;f;;,
by

where byR we denote the simultaneous rolling of the tripkeb,¢,d) and (1,2,3,4).

Remarks. We note that, due to the properties of the Finslerian Cartan tensor, all spectra admit the
real eigenvalue zero, with the associated familg-efgenvectors containing the two unit vectors
attached to the supporting element v, and the family of
H-eigenvectors containing the eigenspace Span{y}. The complexity of computations, which
address the Theory of Resultants related to higher-order polynomial systems of equations, ofte
require support or at least accurate validation by means of symbolic software. Using the Maple 1!
environment, the spectrdl-way theory is tractable for our cases ([4]), as described in the
following.

For the Berwald-Moor 3-d case, there exist points at which the Cartan telmds a
Candecomp/Parafac best rank-1 approximation (relative to the Euclidean-originated Frobenius
norm). Namely, in each Euclidean fiber at (x,y) -with |ly||=1/(A\3) on the trisectrix, the Z-spectral

data is given by:

s7. ={L1L1) /433,
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Z _ o
ST iy =@LD /3V60)
denotes complementing the set with the vectors obtained by complete permuting the component
In this case, the Cartan tensor admits six distinct Candecomp (best rank-I) approximations:

1

C°m
|7

£,81,8f,

For n=3, there exist points at which the Cartan tensor admits only purely complex
HO-SVD decomposition. Namely, in eaEhclidean fiber at (x,y) - with y=(1,1,1) on the trisectrix,
there exists only onld-eigenvalue (A=0) with all H-eigenvectors located along the trisectrix, three
distinct E-eigenvalues (one real and 2 complex conjugate), each allowing three complex 1-

dimensional eigenspaces. We have

H
S, =3Span{(1,1,1)}
St =Span{(-1£i\3)/2,(-1%i\3) /2,1)}°
E _ . o
Sg:(lizj Gy —Span{(ih/g , 1,1},
For n=4, there exist points at which the Cartan tensor admits a Candecomp/Parafac bes
rank-l approximation (relative to the Euclidean-originated Frobenius norm). Namely, in each
Euclidean fiber at (X,y) -with y on the quadrisectrix, we have:

57 ={+(1,1,1,1)/2},

A=0

57 —{(+(3,-1,-1,-1) /243)}°

A=£1/(2\B|y|>

As well, forn=4, there exist points at which the Cartan tensor admits only a purely complex
HO-SVD decomposition. Thel-/E-spectral data for the Cartan tensor in the fiber at (X,y) -with
y=(1,1,1,1) is given by:
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Sy =Span{(L,r,r, DY, re®;
S 1s =Span{(1,7,7,1}” U Span{(p, p,p, 1D} v

1=1/4
uSpan{-1,0,0,1)}° v Span{(«,q,—a,1)}°
S” = Span{(£ix3,1,1, 1)},

2=(1£13)/16

where a=[~(g+1)\(g+1) —4(g* +1+1)]/2

and p=(-1+2iN2)/3,r=-1+iN2,0=%i\2.

For the metric tensay; the Z- andH-/E-eigendata are the common eigendata of square

symmetric matrices, and are given by the equations,

2

g, =" = i .(Eg*—g")-
’ ny' 'n

Since f] is real and symmetric, it is diagonalizable, its eigenvalues are all real, the
eigenspaces are mutually orthogonal, and its signature is (+,-,...,-). The matrix admits ar
orthonormal basis made of eigenvectors. Them$&; we haved] =(1/2)[e;,e1], the spectral data

are

S, ={@,+D)Y¥,

and g admits two distinct Candecomp rank-I approximations,
- 1
g mJ_rE(e1 te,)®(e te,).

Forn=3 andn=4, the matrix of the fundamental tensor is given by
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—a* 2ab 2ab
1
= 2ba -b* 2bc
L&), 9(abc)*? )
2ca 2chb -c

—a* ab ac ad

ba -b* bc bd
1 2

[g], =————| ca cb -c cd

“o8@beR)”| L ap de

where(a,b,c) = (il,iz,%) and respectively
y oy oy
1 1 1 1
(@,b,6,d)=(—,—,—,—)-
yoy o yor

Besides the applications in Relativity of the Berwald-Moor, Chernov and Bogoslovsky
th root models which presented above, similar models have been investigated as well b
P.L. Antonelli ([1]) and by a group of scientists from University of Eindhoven, both focusing on

the behavior of the associated Finslerian geodesics. An anisotropic metric, introduced to mode

General relativity was proposed in 1992 by Roxburgh ([34]):

F(x; ) =[a(p)- ") +b(p)- (Y +(r)) +
+c(p)- (V)Y + () + (DT

where x =(x',x*,x°,x"),and p :\/(Xz)2 +(xX*)+(xh)

A relatively recent Finslerian model was proposed by Bogoslovsky and Goenner ([15],

[23]), whose spectral theory is subject of present and further research.

Conclusions
The spectral theory associated to several types of Finsler metricsyethebot type was

described. The (covariant) metric tensor fields, the Cartan tensors and the fundambri@bt
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tensors were investigated: the spectral data were determined, and the outcoming impact of tf

results on the indicatrix theory of the models and on the related spectral decompositions wa

pointed out. Further research have in view insight on several alternative models, provided by the

Finsler-type Bogoslovsky-Goenner, Randers and Shen structures.
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