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1. Dilaton-spindark matter

The modern observations in cosmology lead to the following conclusions:

The first one is about existence of dark matter with the density exceeding by one order of
magnitude the density of baryonic matter.

The second conclusion consists in preposition that dark matter interacts with the equal by
order of magnitude positive vacuum energy (or quintessence).

And the third conclusion is the understanding of the fact that the expansion with
deceleration is succeeded by the expansion with acceleration.

In [1] it was constructed a model of a dark matter as a dilaton-spin fluid representing an

ideal fluid with the additional degrees of freedom. Each particle of such fluid is endowed with the

dilaton-spin tensoy”?_,

J=J", (L1)

ql’

1
I =500 =)

It’s antisymmetric part SP q IS the spin tensor. The second term is proportional to the

specific (per particle) dilaton chargeof the fluid element]is the trace of the dilaton-spin tensor.

As a result of the variational procedure we get the canonical energy-momentum 3-form

> =pn,+(e+puu+nS u'u, (1.2)

60


mailto:baburova@orc.ru

Proceedings of International Conference PIRT-2015
the metric energy-momentum 4-form
o =T"n, T* = pg” +(e+ p)u’u’ + nS“u"u’ (1.3)

and the dilaton-spin tensar® ; (1.1). In (1.2), (1.3k is the internal energy density of the fluid
p is the hydrodynamic fluid pressyren is the fluid particles concentration equal to the number
of fluid particles per a volume unpit n is a volume 4-form,n, is a 3-form defined as
n, :éJn =*0, . | means the interior product, is the Hodge dual operator 6 is a cobasis of

1-forms of the Cartan—Weyl space. Each fluid element possesses a 4-velocity veatoru®g

which is corresponded to dow 3-form u, u=Tly = u'n, and a velocity 1-formu=u,6°. In
(3) the*dot” notation for the tensor object ®?, is introducedd? =*(ua D®?) , D=d+TA...

is the exterior covariant differentjal A . — the exterior product operator.

2. Cartan—Weyl space
The basic concept of the modern fundamental physics consists in proposition that
spacetime geometrical structure is compatible with the properties of matter filling the spacetime.

As a result of this fact the matter dynamics exhibits the constraints on a metric and a connectio

of the spacetime manifold. Dilaton-spimatter generates in spacetime the Cartan-Weyl CW,

. . a . a ..
geometrical structure with curvatuks”, torsion7 “ and nonmetr|C|t)Qab of the Weyl type.
Let us consider a connected 4-dimensional oriented differentiable masifbldquipped

with a metric g, of index 1, a connection 1-fori™®, and a volume 4-formvy. Then

Cartan—-Weyl CW, space is defined as such manifold equipped with a curvature 2-form
a __ d a a c a __ 1 a ec ed
R, =dl, +I'" AT, Rb—ERbcd A (2.1)
and torsion 2-form
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TP —dg" + " A", T* =2770° A 2.2)
b 2 cd

The metric tensor and the connection 1-form obey the Weyl condition,

Q = gaanb ) Q = Qaea ’ Qab = Qab,ub#cec 4

Qp. ="V, 8 2="0g,=1/98,9 (2.3)

whereQ,, is a nonmetricity 1-formg is a Weyl 1-form.

3. Variational formalism in Cartan-Weyl space
In [2] the modified variational formalism is advanced, according to which the Weyl—Dirac
scalar field £ is introduced in the Lagrangian density, but not enteyethinds” irrespective of

the metric (how it was carried out in [3], [4]), but is entered as a representation of a tangent spac

metric as
£.,=P8g, Q=qdinp,q=-8, (3.1)

where g;;’ are constant components of Minkowski metric and an arbitrary function of spacetime

points #(X) describes some scalar field of geometrical nature. Such a metric tensor representatio

follows from the Poincare—Weyl gauge theory, advanced in [5], and corresponds to a lemma (to
B.N. Frolov, 2003) about a metric tensor of a general affine-metric space, proved in [6].
The representation (3.1) enters in the Lagrangian density with the help of a method of

uncertain Lagrange multipliers. We represent the total Lagrangian density 4-form of the theory as

the sum of the Lagrangian density 4-form of the gravitational figldand of the dilaton-spin

fluid £, : L= LG +£f , While the Lagrangian density 4-form of the gravitational field reading.
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L =2£(1/2DR, An’+p, T n*T +

+p,(+T7++ A Hb)/\*(Tb ANO )+ p,(T7 A Qa)A*(Tb NO,)+
+§Q/\*Q+§Q/\(9"/\*’];)—A77+

+A" A(Q,,~(1/ D)8, +A"(8,,~ B gy

(3.2)

Here n,” =%(0, A0"), f,=1/(2@) (2=87C). The first term is the linear HilbeiEinstein
Lagrangian generalized to the Cartdfeyl space.A is the cosmological constand,, p,, p,,
s, &, ¢ are the coupling constanta” and A% are the Lagrange multipliers, and we have as

consequence of the Weyl condition (Z.glea” =0.

We use the variational procedure in the exterior form language which is based on the maste
formula derived the following Lemma, proved in [7]. Lemma gives the rule how to compute the
commutator of the variation operator and the Hodge star operator.

The variation of the total Lagrangian density 4-form with respect to the connection 1-form

I" and to the base 1-fornd” gives I'-equationand 6“-equation. The variation to the

components of the tangent space megric gives g -equation. The variation of the Lagrangian
density 4-form with respect to the Lagrange multipliaré and A% yields the Weyl condition
(2.3) and the representation (3.1). The variation to the scalarfiefives the relation,
A’g  =0.

After antisymmetrization of thé -equation and then contracting externally on the right
with 6%, we receive the consequence of this equation, which is not containing the Lagrange

uncertain multipliers,
2 T 1
5(1—,014‘2,02) = Z‘Fé/ Q, (33)

where7 = % (9, A*7 ) is a torsion trace 1-form. After contracting theequation and using (3.3),

one obtains another consequence,
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3(p, —2p,+85(1+27))
4(1-p, +2p,) '

Q° :En/ua, =16+ (3.4)
2T

4. Modified Friedmann—Lemaitre equation
It was proved that in the homogeneous and isotropic universe with

Friedmann—Robertson—Walker (FRW) metric

2
ds? =1a—(]:f)2(1’1'2 +a*(t)r’(dé* +(sin9)’dep*) - dt?, (4.1)
—kr

filled with the dilaton dark matter (for FRW metric S,, = 0) and dark energy described by the

cosmological term A, the Einstein-like equation is valid:

R4 R

R,==8, R |n,+An, +a(20,0°1,-0,0°n,) =%, . (4.2)

1 2
)
o= * +& 3

C4(1-p, +2p) 64

R R
Here R”_and R are a Ricci tensor and a scalar curvature of a Riemannian space

respectively. As a consequence of (2.3) and (3.1) the thirt term in (4.2) using (3.4) can be rewrittel
in the form of an energy-momentun tensor of a perfect fluid,

2
nj
T,=(ey+ P U, ~ D8, £5= D, :aae[zj
After integrating the continuity equatiod(nu)=0 for the FRW metric one obtains the

matter conservation lama® = N= cons.

Therefore, taking into account (3.4), the equation (4.2) can be represented in the form,
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R 1 R
Rab_igab R=x((¢,+pluu, —pg. ), (4.3)

where ¢, and p, are an energy density and a pressure of an effective perfect fluid,

2 2 2
n n JN
E=c+e —F|— |, =p+p —E|— |, E=axe — |, 4.4

T

Here ¢, = A/ee and p, =—-A /@ are an energy density and a pressure of a vacuum with

the equation of state;,, =—p, > 0.

The equation (4.3) yields the modified Friedman—Lemaitre (FL) equation

2.m*

Q

(fj +£2=§ 8+8V_0($( /n ] : (4.5)

Let us consider the case of super early Universe, when the scalgf fieldery intensive

and according to (4.4) has an equation of state of super-rigid matter. If we suppose that in this ca:
the dilaton-spin fluid also has its equation of state of super-rigid matter, then the modified

Friedman-Lemaitre equation has the form
. \2
a x
E;J :g(é}a()'i‘gl —((:), k:O, (4.6)

where & = £a’® = const is the integration constant of the energy conservational law

e+ p

de= dn.

n
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The equation (4.6) can be exactly integrated after representing in the form

1/6

aY A ax’( N E=
2l ==(a-2,) . a,,= - (4.7)
a 3a i A\ 27 A
The solution corresponding to the initial data0, a=a__ reads,
a=a_ (cosh~/3At)"°. (4.8)

This solution describes the inflation-like stage of the evolution of the Universe, which

continues while the scalar field will reduce its intensity, and the equation of state of the

dilaton matter will change and will become differ from the equation of state of the super-rigid
matter.
The results were obtained within the framework of performance of the state task No

3.1968.2014/K of the Ministry of education and science of the Russian Federation.
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