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1. Introduction
Now at construction of the modern theory of gravitation three types of post-Riemannian

spaces are used. This is a general affine-metric space characterized by ciRfatme torsion

T2 2-forms, and also by a nonmetricig, 1-form,
a a a c a a a b c
R:=dl}+ T ATS, T"=d0" + T3 £0", Q,=—(V 8, ) 10",

where 8% — cobasis 1-formsh*, — tetrad coefficients, J,, — components of tangent space
metric tensor,flf — a post-Riemannian space connection 1-fonm; a symbol of external

multiplication, d — an external differentiation operatoV,ﬂ — a covariant post-Riemannian

differentiation symbol.
Other type of spaces is a Cartan-Weyl spa¥4, which is a special case of the general

affine-metric space, if the nonmetricity 1-form submits to a Weyl condition,

1
Q,= ZgabQ, Q=Q.6°, Q=g"Q,, Q.=£"Q, =Q.. (1.1)
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Here Q is a Weyl 1-formBeiins, and Qa is a Weyl vector.

At last, the third one is a Riemann-Cartan spR<t§4 , Which is a special case of a Cartan-

Weyl space, in which the Weyl vector is equal to zey,=0.

In [1]-[3] a gawe theory of Poincaré-Weyl group was constructed, in which the Poincaré
group was added with a group of spacetime expansions and compressions (dilatations). I
mathematical sense the group of dilatations is equivalent to the Weyl’s group of scale
transformations. As a consequence of this theory, spacetime appears to be allocated of Carta
Weyl space geometrical properties, and such orientation of basis can be chosen in its tange

spaces that components of tangent space metric tensor can be chosen in the form,
g, =B (x)g,, (1.2)

where gg"b are constant components of Minkowski metrics, and an arbitrary function of spacetime
points g(x) describes some scalar field of geometrical nature.
The given statement represents a special case of the following statement, proved in the monogra,

[4] for the general affine-metric spa@(g,r).

Lemma (B.N.Frolov, 2003). A tangent space basis of the general affine-metric space can not be
chosen in a gauge covariant form as a "rigid" basis, in which all metric tensor components
represent a set of the same numbers in each spacetime point.

On the basis of the specified results, in-[A]L] the conformal theory of gravitation in a Cartan-
Weyl space was advanced. Application of the given theory for super-early evolution of the

universe has allowed to receive an exponential reduction in due course an effectiegioaino

4 . . . " .
constantA " that has in turn allowed to give a way of overcoming a well-known "cosmological

constant problem".
In [12] the new variational principle in a Cartan-Weyl space was formulated, which
modified a variational principle in this space, advanced in[[3]], [13]. This new variational

principle has several advantages in comparison with accepted earlier.
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2. The modified variational principle in a Cartan-Weyl space with scalar Weyl-Dirac field
According to the gauge gravitational theory of Poincaré-Weyl group [1}[3], spacetime
has Cartan-Weyl geometrical structure, and besides there should be an additional structure :

geometricabcalar field 3.

The physical substantiation of advantage of the Poincaré-Weyl group as a group of
spacetime invariant properties is based on the fact that the high energy physics finds out proper:
of a scale invariance (Bjorken scaling, the 1990 Nobel Prize in physics), becomes as well apparet
in cosmology. At an early stage of the universe evolution, when rest masses of elementary particle
did not arise yet, all interactions were carried out by massless quanta. In this case thegenatera
have property of a scale invariance (independence of absolute size of intervals), pmairteteys
group of space, in which these fields exist, is the Poincaré-Weyl group.

So, a hypothesis about scale invariance, according to which an amplitude of initia
fluctuations of density were identical in all scales, underlies calculation of an initial part of a
spectrum of initial fluctuations of density of a matter in the early universe (HaZgsaiovich
plateau), confirmed with COBE experiment with studying anisotropy of brightness of relic
radiation (the 2006 Nobel Prize in physics).

In [5]-[7] in a tetrad formalism and in [8[11] in a formalism of external forms, the
variational principle for the conformal theory of gravitation in a Cartan-Weyl space with
additional structure as a geometrical scalar field was advanced. At this theory the scalar field ha
the properties similar to a scalar field, entered by Dirac in the well-known work [14], and earlier
by Deser [15]. This field was named as Dirac scalar field.

In [12] the modified variational formalism is advanced, according to which the scalar field

3 is not entered in the theory by "hands" irrespective of the metric (how it was carried out in [5]

-[11]), but this scalar field is entered in a Lagrangian density as a representation of a tangent spa
metric as (1.2) with the help of a method of Lagrange uncertain multipliers. In this case properties
of thisscalar field are substantially determined by ideas of the old Weyl’s gauge theory [16], and

this field is expedient for naming as Weyl-Dirac scalar field.

The Lagrangian density 4-form of the theory we shall present as

L=L +A"AQ,-(1/Vg,Q+A"(g,,—B g, (2.1)
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Lo=2f[(1/2) R An, +
+p T2 ART 4+ p (TAAG) AT AO) +p,(TEAO) AT A O) + (2.2)
+16EQu AT+ & QA0 Ax T+ 1 dif A+ d B ]

Here 7731’ =*(0, A@b); £,=c" /167G, p,,p, p,¢,¢,1 are coupling constantsA®

and ﬂab areLagrangeuncertain multipliers, and we have as consequence of the Weyl condition
(1.1), 9,,A® =0. In comparison with [5][11] here the term with cosmological constant is

omitted as the local task will consider, and also a Lagrange density of external fields is omitted a:
the problem in emptiness will be solved further. Last term in (2.2) is added for maintenance of

dynamics of the scalar fielgs .

In order to derive the equations of a gravitational field in emptiness it is necessary to vary
(3.1) and (3.2) independently with respect to the basic féting?-equation), to the connection
1-form Fab (I"-equation), to the components of the tangent space n@ji¢ g -equation), to

the field £ and to the Lagrange multipliers using a Lemma about result of commuting of variation

operator and Hodge dual conjugation [17].

In a result th@ -equation reads,

B3+ ST AR 420, AQY 4200 A¥T 4
+2p,0° NOANKTNO)+2p,0° NO (T AO)+ (2.3)
+4EST*Q+E(2876° AT +60° A*(Q AHa))]—Ai’ =0,

the @ -equation reads,
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leC AR+

+p,[2D*T +7, A#(T? /\Ha)+*(*7b ANOYAFT, |+
+p,[2D(0, A #(T° A 0.)) +27° A *(O, AT )~

—*(T" ANO NOYTNO)—*(x(T* /\Hd)/\Ha)/\*(Td ~O )]+
+p,[2D(0, Ax(T? NGO, ))+2T, Ax(T? NO,)—

—*(T" ~NO NO T /\0[)—*(*(’71’ ANOINOYAH(T AO )]+
+E-QAKQ A, ~*(3Q A 8,) *Q+{[D*(QAE,) -
+[-dInBA0)-*(*dIn BA0 ) A*dIn B)]=0,

(2.4)

and theg -equation reads:

2f0|:[%gabRcd Ancd+%9(aA9CA*Rcbj_
+pl[T(aA*Tb)+%gab7;A*T°+¢9(a*(*T'¢/\9°)A*TC] +

+p2(25§aT'C'A9b)+%gabTC/\ 0, —+p, (2T *r O t)+%g T °AO. -
0 A#((TINO) A OD) A(T 1 O,)) +
+¢f(29abD*Q+%gabQ/\*Q—H(a/\*(*Q/\Qb))*Q)+

+C(QPT CA*T, — g0 AD*T + T PA*(QAO°) +
+%gabQ/\0°/\*Tc+l9(a/\*(*’T|C|/\6?°)/\*(Q/\0L))+
+|(%gabdMﬁ/\*dmﬂ—Q(a/\*(*dh’lﬂ/\eb) InxdIng )]~
—DAab—%Aab/\Q+/Iab:O. (2.5)

The variation of (2.2) with respect {8 gives the equation

ld*dIng - 1*g,, = 0. (2.6)
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The variation (2.2) with respect ta® gives the Weyl condition (1.1). It means, what

spacetime has geometrical structure of a Cartan-Weyl @H\zﬂg The variation (2.2) with respect

to /lab gives the structure of the tangent space metric (1.2), which is realized at the certain mos
convenient choice of basis in each spacetime point. A consequence of (1.2) is representation ¢
the Weyl 1-form as [12]

Q=qding, qgq=-8. (2.7)

After symmetrization of the equation (2.4) Lagrange uncertain multiplie¥s are

determined and should be substituted in the equation (2.5) that allows then to determine Lagranc

uncertain muItipIiers&ab. Representations (1.1) and (1.2) together with (2.7) should be substituted

in the variational field equations (2-3R.5), what results a manifestation in these equations of
interaction of gravitational field with the scalar fiefgl in a Cartan-Weyl spaceW,.

After antisymmetrization of the equation (2.4) we receive the consequence of this

equation, which is not containing the Lagrange uncertain multipliers,

1 c c
—E’TC A1, + 1, ~dInB+2p,0, /\*’Z;] +2p,0, 10, AT NG, )+
(2.8)
+2p.0 NO, A*(I7 NO)+CG, A*(QA0O,)=0.

After contracting of the equation (2.8) externally on the right Witrand then applying

Hodge dual operation, we shall receive the following consequence,
2 1
5(1—,01+2p2)T: Z+é’ Q, (2.9)

where 7 =*(0.A*T*) isa torsion trace 1-form.

It is possible to conclude on the basis of (2.7) and (2.9) that as a consequence of the

gravitational field equations the torsion trace 1-form can be represent as
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3(1+4¢)
-1+ p,-2p,

T=sdnp, s= =const (2.10)

After contracting of the equation (2.3) on the indexed, one canobtain another

consequence, which does not contain Lagrange uncertain multipliers,
2(p, —2p,+8¢)T +(16£ +34)Q =0. (2.11)

3. Spherically symmetric solution for the central body in Cartan-Weyl space with Weyl-
Dirac scalar field
We shall search a solution in a spherically symmetric case in the form,

ds’ =e "dt* —e"(dr’ + r*(do* +sin’ 8d¢*)), (3.1)

where U= ,u(r) [18]. Owing to spherical symmetry the torsion 2-form determines only by its trace

that in the formalism of external forms reads, = (1/ 3) T A 6. With the account of (2.7) and

(2.10) the relation (2.9) will be written down as,
1
25(1—p1+2p2)+3q §+Z =0 . (3.2)

As a result of calculation, one can convince that all components of the equation (2.8) for
the metric (3.1) vanish as a consequence of the equality (3.2).
A calculation of the@ -equation with the account of (3.2) gives the following results.aAt 0

we receive the equation
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2

14 2 [ 14 1 14
20 p"+ =y |+ =| —(np) |, (3:3)
r k
1 1 3
k?2=1]+ +=gsC+=gs — —ag* |. 4
q| ¢ qu 861 64(1 (3.4)

At a=1, a=2 anda=3 one obtains the identical equations

2

(=] py | 35)

Calculation of the trace of thg -equation results in the equation,

2

”n 2 ’ ! 1 [
pA =+ (W)= —np) | +
r k
(3.6)

2 1 1 3
+ | (Inp)'+—(np) ||-/+8 +=5+—=5——q | |
(Ing)" +=—(Inf) gs+5se+ g 64‘])

Joint consideration of (3.2) and (2.11) gives a relation,
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1 1 3
C]¢f+§ §+Z 5—5020: (3.7)

owing to which the field equations (3-3B.6) become essentially simpler and reduce to the

following three differential equations,

w2 =0, (n f)"+2(n Y =0, w' =10 py' (3.9)

which solution for the metric (3.1) and the Weyl-Dirac scalar field reads,

e

~N |c;W

U=, A)=p el 2, (3.9)

N

wherer, and 8, are an arbitrary constants of integration, where the valy8 otlescribes the

cosmological background of the Weyl-Dirac scalar field on the infinity determined by the value

of the cosmological constant [5]11].

As a result a Cartan-Weyl spa€8\, appears with the metric

r

ds*=e rdt* —e" (dr*+r’(d0* +sin* 0do*)). (3.10)

This metric at the larger will give the same experimental results, as well as the

Schwartzshild metrics, if the constant of integration choose equal to the gravitational radius,
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o =rg = 2Gm/ ¢®. The metric (3.10) is known a@apapetrou-Yilmaz-Rosen (PYR) metric

[19]-[21]. Interest to this metric [22]—[24] arises in connection with the fact that it does not
contain a singularity on the gravitational radius.

According to (3.9) the density of the Weyl-Dirac scalar field grows inside of mass
congestions that increases a gravitational field inside these congestions. In this connection in [&
the hypothesis thahe Weyl-Dirac scalar field represents alongside with "dark energy" also the
basic component of "dark mattes' stated.

The resultswere received within the framework of performance of the state task Ne

3.1968.2014/K of the Ministry of education and science of Russian Federation.
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