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1. Introduction 

Now at construction of the modern theory of gravitation three  types of post-Riemannian 

spaces are used. This is a general affine-metric space characterized by curvature Ra
b  and torsion 

Ta   2-forms, and also by a nonmetricity Qab  1-form,   

  , , ,a a a c a a a b c

b b c b b ab ab c
R dГ Г Г � d Г � � � 

            

 

where 
a   cobasis 1-forms, ah   tetrad coefficients,  abg  components of tangent space 

metric tensor, a

b
Г    a post-Riemannian space connection 1-form,    a symbol of external 

multiplication, d   an external differentiation operator,    a covariant post-Riemannian 

differentiation symbol.  

Other type of spaces is a Cartan-Weyl space 4CW , which is a special case of the general 

affine-metric space, if the nonmetricity 1-form submits to a Weyl condition,  
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Here Q  is a Weyl 1-form ȼɟɣɥɹ, and aQ  is a Weyl vector.  

At last, the third one is a Riemann-Cartan space 
4

RC , which is a special case of a Cartan-

Weyl space, in which the Weyl vector is equal to zero,  0aQ  .  

In  [1] [3] a gauРe tСeorв of PoТnМarц-Аeвl Рroup аas МonstruМteН, Тn аСТМС tСe PoТnМarц 

group was added with a group of spacetime expansions and compressions (dilatations). In 

matСematТМal sense tСe Рroup of НТlatatТons Тs equТvalent to tСe Аeвl’s Рroup of sМale 

transformations. As a consequence of this theory, spacetime appears to be allocated of Cartan-

Weyl space geometrical properties, and such orientation of basis can be chosen in its tangent 

spaces that components of tangent space metric tensor can be chosen in the form,  

 

                          2( ) M

ab ab
g x g                                                            (1.2) 

 

where  M
abg  are constant components of Minkowski metrics, and an arbitrary function of spacetime 

points ( )x  describes some scalar field of geometrical nature. 

The given statement represents a special case of the following statement, proved in the monograph 

[4] for the general affine-metric space 4( , )L g  . 

Lemma (B.N.Frolov, 2003). A tangent space basis of the general affine-metric space can not be 

chosen in a gauge covariant form as a "rigid" basis, in which all metric tensor components 

represent a set of the same numbers in each spacetime point.  

On the basis of the specified results, in [5] [11] the conformal theory of gravitation in a Cartan-

Weyl space was advanced. Application of the given theory for super-early evolution of the 

universe has allowed to receive an exponential reduction in due course an effective cosmological 

constant 
4  that has in turn allowed to give a way of overcoming a well-known "cosmological 

constant problem".  

In [12] the new variational principle in a Cartan-Weyl space was formulated, which 

modified a variational principle in this space, advanced in [5] [11], [13]. This  new variational 

principle has several advantages in comparison with accepted earlier. 
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2. The modified variational principle in a Cartan-Weyl space with scalar Weyl-Dirac field 

χММorНТnР to tСe РauРe РravТtatТonal tСeorв of PoТnМarц-Weyl group [1] [3],  spacetime 

has Cartan-Weyl geometrical structure, and besides there should be an additional structure as 

geometrical scalar field  .  

TСe pСвsТМal substantТatТon of aНvantaРe of tСe PoТnМarц-Weyl group as a group  of 

spacetime invariant properties is based on the fact that the high energy physics finds out property 

of a scale invariance (Bjorken scaling, the 1990 Nobel Prize in physics), becomes as well apparent 

in cosmology. At an early stage of the universe evolution, when rest masses of elementary particles 

did not arise yet, all interactions were carried out by massless quanta. In this case these interactions 

have property of a scale invariance  (independence of absolute size of intervals), and the symmetry 

Рroup of spaМe, Тn аСТМС tСese fТelНs eбТst, Тs tСe PoТnМarц-Weyl group. 

So, a hypothesis about scale invariance, according to which an amplitude of initial 

fluctuations of density were identical in all scales, underlies calculation of an initial part of a 

spectrum of initial fluctuations of density of a matter in the early universe (Harisson-Гel’НovТМС 

plateau), confirmed with COBE experiment with studying anisotropy of brightness of relic 

radiation (the 2006 Nobel Prize in physics). 

In [5]  [7] in a tetrad formalism and in [8] [11] in a formalism of external forms,  the 

variational principle for the conformal theory of gravitation in a Cartan-Weyl space  with 

additional structure as a geometrical scalar field was advanced. At this theory the scalar field had 

the properties similar to a scalar field, entered by Dirac in the well-known work [14], and earlier 

by Deser [15]. This  field was named as Dirac scalar field.  

In [12] the modified variational formalism is advanced, according to which the scalar field 

  is not entered in the theory by "hands" irrespective of the metric (how it was carried out in [5] 

 [11]), but this scalar field is entered in a Lagrangian density as a representation of a tangent space 

metric as (1.2) with the help of a method of Lagrange uncertain multipliers. In this case properties 

of this sМalar fТelН are substantТallв НetermТneН  bв ТНeas of tСe olН Аeвl’s РauРe tСeorв [1θ], anН 

this field is expedient for naming as Weyl-Dirac scalar field.  

The Lagrangian density 4-form of the theory we shall present as    

 

2( (1 / 4) ) ( ) ,ab ab M

G ab ab ab ab
L L Q g Q g g                          (2.1) 
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L = 2 1/ 2 R

T T (T ) (T ) (T ) (T )

16 Q Q 4 Q T dln d ln .

a b
G b a

a a b a b
b a a b

ab a b
ab ab

f

l


      
    

  
          

       
         (2.2) 

Here     ( )b b
a a ;   4

0
/16f c G ,     

1 2 3
, , , , ,l  are coupling constants;  ab  

and 
ab  are Lagrange uncertain multipliers, and we have as consequence of the Weyl condition 

(1.1), 0ab
abg   . In comparison with [5] [11] here the term with cosmological constant is 

omitted as the local task will consider, and also a Lagrange density of external fields is omitted as 

the problem in emptiness will be solved further. Last term   in (2.2) is added for maintenance of 

dynamics of the scalar field  .  

In order to derive the equations of a gravitational field in emptiness it is necessary to vary 

(3.1) and (3.2) independently with respect to the basic forms 
a  ( -equation),   to the connection 

1-form a
b  ( -equation), to the components of the tangent space metric abg  ( g -equation), to 

the field   and to the Lagrange multipliers using a Lemma about result of commuting of variation 

operator and Hodge dual conjugation [17].  

In a result the Г-equation reads, 

 

                       

0 1

2 3

1 1 1
2

4 2 2
2 ( ) 2 ( )

4 * (2 * *( )) 0,

b bc bc b

a c a ac a

b c b c

c a a c

b b c b b

a a c a a

f

Q

    
       
     
                

       
           (2.3) 

 

 the  -equation reads,  
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c
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l d d

    
    


           
      

      (2.4) 

 

and the g -equation reads: 
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g

l g

   (2.5)              

 

The variation of (2.2) with respect to    gives the equation 

 

d d ln 0ab
abl g     .                                                     (2.6) 
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The variation (2.2) with respect to ab  gives the Weyl condition (1.1). It means, what 

spacetime has geometrical structure of a Cartan-Weyl space 4CW . The variation (2.2) with respect 

to 
ab  gives the structure of the tangent space metric (1.2), which is realized at the certain most 

convenient choice of basis in each spacetime point. A consequence of  (1.2) is representation of 

the Weyl 1-form as [12] 

dln , = 8Q q q   .                                            (2.7) 

After symmetrization of the equation (2.4)  Lagrange uncertain multipliers ab  are 

determined and should be substituted in the equation (2.5) that allows then to determine Lagrange 

uncertain multipliers 
ab .  Representations (1.1) and (1.2) together with (2.7) should be substituted 

in the variational field equations (2.3)(2.5), what results a manifestation in these equations of 

interaction of  gravitational field with the scalar field    in a Cartan-Weyl space 4CW .  

After antisymmetrization of the equation (2.4)  we receive the consequence of this 

equation, which is not containing the Lagrange uncertain multipliers,  

 

    

1 [ ] 2 [ | | ]

[ ]

1
dln 2 2 ( )

2

2 *( ) *( ) 0.

c c

c ab ab a b a c b

a

a a b c a b
I

        
     

          
       

     (2.8) 

 

After contracting of the equation (2.8) externally on the right with 
a  and then  applying 

Hodge dual operation, we shall receive the following consequence,   

 

       
1 2

2 1
(1 2 ) ,

3 4
                                              (2.9) 

 

where    *( * )c

c
 is a torsion trace 1-form.  

It is possible to conclude on the basis of (2.7) and (2.9) that as a consequence of the 

gravitational field equations  the torsion trace 1-form can be represent as  
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1 2

3(1 4 )
ln ,

1 2
sd s const

  
      ,                 (2.10) 

 

After contracting of the equation (2.3) on the indexes ,a b,  one can obtain another  

consequence, which does not contain Lagrange uncertain multipliers,  

 

1 2
2( 2 8 ) (16 3 ) 0.                                         (2.11) 

 

3. Spherically symmetric solution for the central body in Cartan-Weyl space  with Weyl-

Dirac scalar field 

We shall search a solution in a spherically symmetric case in the form,  

 

                       2 2 2 2 2 2 2( ( sin )),ds e dt e dr r d d                                (3.1) 

 

where ( )r   [18]. Owing to spherical symmetry the torsion 2-form determines only by its trace 

that in the formalism of external forms reads,  T 1/ 3 Ta a  . With the account of (2.7) and 

(2.10) the relation (2.9) will be written down as,  

 

1 2

1
2 (1 2 ) 3

4
0s q  

        



 .                                    (3.2) 

 

As a result of calculation, one can convince that all components of the equation (2.8) for 

the metric (3.1) vanish as a consequence of the equality (3.2).  

A calculation of the  -equation with the account of (3.2) gives the following results. At  0a   

we receive the equation 
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2

22 1
2 ( ) (ln ) ,

r k
   
                       

                                         (3.3) 

2 21 1 3
.

2 8 64
k l q qs qs q 

          
                                     (3.4) 

 

At  1a  ,  2a   and 3a   one obtains the identical equations  

 

                                       

2

2 1
( ) (ln ) .

k
 

        
                                                          (3.5) 

 

Calculation of the trace of the g -equation results in the equation, 

 

   

2

22 1
( ) (ln )

2 1 1 3
(ln ) (ln ) 8 .

2 8 64

r k

l q s s q
r

   

   

                                        

            (3.6) 

 

Joint consideration of (3.2) and (2.11) gives a relation, 

 



Proceedings of International Conference PIRT-2015 

57 

 

                               
1 1 3

0 ,
2 4 64

q s q 
         

                                           (3.7)  

 

owing to which the field equations (3.3)(3.6) become essentially simpler and reduce to the 

following three differential equations,  

 

      
2 2

'' ' 0, (ln )'' (ln )' 0, ' (ln )'.l
r r

                         (3.8)  

 

which solution for the metric (3.1) and the Weyl-Dirac scalar field reads,  

 

   0 0( ) , ( ) exp ,
r r

r r
r l r

  

          

                                     (3.9) 

 

where 0r  and   are an arbitrary constants of integration, where the value of   describes the 

cosmological background of the Weyl-Dirac scalar field on the infinity determined by the value 

of the cosmological constant [5] [11]. 

As a result a Cartan-Weyl space 4CW appears with the metric 

 

                   
0 0

2 2 2 2 2 2 2( ( sin )).

r r

r rds e dt e dr r d d                              (3.10) 

 

This metric at the large r  will give the same experimental results, as well as the 

Schwartzshild metrics, if the constant of integration choose equal to the gravitational radius,  
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2
0 2 /gr r Gm c  . The metric (3.10) is known as Papapetrou-Yilmaz-Rosen (PYR) metric 

[1λ]−[β1]. Interest to tСТs metrТМ [ββ] [24] arises in connection with the fact that it does not 

contain a singularity on the gravitational radius.  

According to (3.9) the density of the Weyl-Dirac scalar field grows inside of mass 

congestions that increases a gravitational field inside these congestions. In this connection in [8] 

the hypothesis that the Weyl-Dirac scalar field represents alongside with "dark energy" also the 

basic component of "dark matter" is stated. 

The results аere reМeТveН аТtСТn tСe frameаork of performanМe of tСe state task № 

3.1968.2014/K of  the Ministry of education and science of Russian Federation. 
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