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The existing numerical models of pulsar timing do not reveal the true accuracy and stability of the periodic radiation 

of neutron stars. The offered analytical models detect the consistency of the rotation parameters of the pulsar, which 

confirm the identity of the relativistic pulsar time scales in the coordinate systems and their physical compliance with 

the barycentric dynamic time and the unreduced topocentric  time. A set of parameterized pulsar time scales in spatial 

systems, oriented in the angular directions to the International Celestial Reference Frame (ICRF), constitute a single 

astronomical 4-dimensional reference time-space system based on the periodic radiation of the pulsars and the spatial 

coordinates of the extragalactic sources – quasars. 
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Introduction 

Highly magnetized neutron stars, which were discovered as pulsars in 1967, have been 

proven for the study of a wide variety problems in physics and astrophysics, such as pulsar genesis 

and neutron star structure, magnetic decay and pulsar braking, properties of the interstellar and the 

circumstellar medium, long-term stability of its own periodic radiation, etc. Many of results are 

obtaining by the pulsar timing based on the precise measuring the times-of-arrival (TOAs) of the 

pulsar signals at the radio telescopes that are located on a rotated Earth orbiting the Sun. Since the 

observing frame is not inertial, it is provided to transfer the topocentric TOAs measured at the 

observatory to the center of mass of the solar system (SSB) as the best approximation to an inertial 

frame available. This transformation includes clock corrections to transfer the measured time to 

the time standard defined as UTC. Further corrections modify the TOAs at the telescope take into 

account not uniformly rotating of the Earth and frequency-dependent delay of the pulses caused 

by the dispersion in the interstellar medium.  

The transfer function of TOAs contains a number of astrometric and spin parameters, which 

are not known a priory and need to be determined precisely in a least squares fit analysis of the 

measured TOAs. The astrometric parameters include the position of the pulsar, and its proper 

motion and parallax. Spin parameters are the rotation frequency (or period) of the pulsar and its 

derivatives. When a timing model including these parameters is fitted successfully, post-fit 

residuals show a random distribution around zero. Incorrect or incomplete timing models cause 

systematic components in the post-fit residuals identifying the parameter that needs to be included 
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or adjusted. In a separate group include relativistic corrections for a) propagation in the solar 

system due to the light-travel time from the telescope to SSB; b) an extra delay due to the curvature 

of space-time in the solar system; c) the combined effect of gravitational redshift and time dilation 

due to motion of the Earth and other bodies around the Sun [1].  

Although the long-term stability of the periodic radiation of pulsars determine their rotation 

parameters, however they, as a priori unknown values, are fitted along with other parameters. 

Random variations of the post-fit residuals achieve the millisecond range, which are several orders 

greater than the variations of modern standards of time.  

Our approach, in general, is to find analytical relation of the pulsar time intervals and the 

physical parameters so that the numerical values of these parameters should be determined and 

best matched with measured values of the observed intervals. Analytical relations and numerical 

values should be extended to both, the barycentric and topocentric reference systems. From fitting 

Мan be eбМluНeН anв parameters tСat Мan’t be obtaТneН НТreМtlв from tСe observatТons. 

 

The parametric consistency of the periodic radiation of pulsars 

It is evident that these problems require a precise analytical solution based on the 

parameterization of the observed TOAs to avoid the significant effects of unmodeled timing noise 

caused by random deviations of residuals. Analytical form of the Pulsar Time intervals PT of the 

periodic radiation, expressed by the rotation parameters of the pulsar, is reduced to Maclaurin 

power series:  
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Here are: 0P , P , P  – the rotation period of the pulsar and its derivatives, N – pulse number in a 

sequence of radiation events. 

Figure 1 shows the graphs of the components of the PT intervals in the power series (1) 

within  of about two years of observations for the specified typical values of the parameters of 

rotation. This implies that the required values of the rotation period of the pulsar and its derivatives 

are fixed values, which spread by under certain specified conditions on the duration observations 

within the borders between the start and end observed events at the current epoch. 



Proceedings of International Conference PIRT-2015 

38 

 

 

Fig.1. The parametric components of the intervals (1) for typical values  

of  the rotation parameters of the pulsar. 
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Note that the components of the polynomial power series decrease by 5-6 orders of magnitude 

with increasing the order of the derivatives. By further extrapolating of the rotation parameters the 

estimated contribution of the third derivative is so small that components of  the PT  intervals (1), 

which is defined this derivative within two-year span, does not exceed one nanosecond or less, so 

that it could not detect by using of the modern physical measurement tools on a background of the 

observed instrumental noise. Therefore derivatives of the rotation period higher than second order 

in the model (1) are not considered. That is why the convergence of series is achieved with only 

three rotation parameters 0P , P , P . 

We assumed in the ratio (1), that the rotation parameters of the pulsar, which defines the 

intervals of pulsar time, are known a priori. However, in reality, these parameters, which are taken 

for calculations of the intervals, are known only approximately, from the previous observations. 

Then the problem arises: to retrieve such values of the rotation parameters on the basis of the 

observed intervals in such a way that they would be consistent with the observed intervals within 

a selected range of observations.  

To resolve this problem, it is required by the measurements of the TOAs to find such values 

of the observed rotation period and its derivatives, for which the divergence between measured 
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TOAs and calculated ones by these parameters, would be the minimum possible within selected 

range of observations. 

If the power series expansion of the form (1) to apply to the measured intervals of pulsar 

time and associate them with the observed rotation parameters, we obtain the equations whose 

solutions are observed rotation parameters on the chosen initial epoch observations [2]. This 

solution determines the numerical values of the parameters of rotation, in which the left and right 

parts of Eq. (2) coincide within any interval with the estimated accuracy, whatever the initial epoch 

of observations. 

The equation of the observed intervals of  PT  in accordance with (1) is: 

 

  * * 2 *2 * 2 3

0 0 0 0

1 1
(1 )( ( 2 ) )

2 6i i i
PT P N P PN P P P P N       (2) 

 

Here are: PTi are the numerical values of the observed intervals obtained from the planetary 

ephemeris; *
0P , P , P  are the pulsar rotation parameters obtained by solving of the equation (2);  

i  is divergence of series  (2) of the PTi  approximated by the rotation parameters of pulsar. 

Figure 2 shows the differences between the observed intervals obsPT  and the intervals 

calcPT  calculated from the observed rotation parameters of the PSR J1509 + 5531: 
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Fig. 2. Convergency of the obsPT  and calcPT  intervals of the PSR J1509+5531. 

 

Graph in the Figure 2 corresponds to the numerical values*
0P =0,739681922904 s  (MJD 49904.0) 

[3],  P  = 4,9982110-15 ss-1 [4], P =3,066910-29 s-1. This value of P obtained by solving the 
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equation (2), together with *0P , P , satisfies the convergence of  Eq. (2). The divergence of the 

PT intervals is determined by the coefficient of variation i . For zero variations, the observed 

intervals coincide with the intervals, which are determined by the fixed parameters at the initial 

epoch of observation. In the general case, if i 0, these intervals coincide with the estimated 

accuracy within any range. As follows from figure 2, divergency of the obsPT  and calcPT  is near 

12,4 ns (rms) within observation range about 2 yrs. 

It is obvious, for any choice of the epoch of initial event, the value of period will be 

different, taking into account the gap between epochs and the derivatives P , P . The 

corresponding settings of rotation parameters also satisfy the convergence of the series expansion 

(3) for any extension in the vicinity specified by the variable *
0t P N : 
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Here are: 
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Values of iN , determined by the equation (2), unlike the calculated ratio (1), are not integer 

due to random variations in the pulse time of arrival (propagation, error of AT, ephemeris of the 

Solar system, fitting, etc.). Founded in accordance with the equation (2) the real values iN  are 

different from integer value by 
( )
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within the current period of rotation. 

Real value ( )i iN N   includes himself in the solution of equation (2), in addition to the 

*
0P , P , P . It corresponds to the minimum of random variations of the divergence i  and matches 

the phase of the observed event radiation determined by the stable rotation parameters of the pulsar 

at any real values of  iN . 

Unmodeled variations of the observed intervals of the coherent pulsar radiation are limited 

within nanosecond values range, although the scattering of the time of pulse arrival can be up to 

several milliseconds. 

Thus, the pulsar time is synthesized in the parametric form based on the observed rotation 

period and its derivatives. The numerical values of the parameters of rotation are determined 

exclusively by the current observational data of timing, any other data (such as residuals) or their 
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evaluation (such as RMS of residuals) in addition does not require. The accuracy and stability of 

the pulsar time is determined by the observed parameters of the pulsar, which are obtained by 

parametric synthesis, based on the rotational model of pulsar radiation, and are determined from 

the observed coefficients of the linear approximation intervals within the duration of the 

observations. Random errors of observed intervals do not exceed (10-18 – 10-19) within the 40-

year timing continuance of pulsars, which is several orders of magnitude less then this feature of  

the quantum standards of time. 

 

The space invariance of the observed periodic radiation of pulsars 

Physically pulsar timing measurements are carried out at the Pushchino Radio Observatory 

at the BSA LPI radio telescope, which operates at frequency range close to 111.3 MHz. Pulsar 

observations were performed on the 512-channel radiometer with a channel bandwidth of 5 kHz. 

The data were sampled at intervals from 0.2048 up to 2.56 ms. The BSA radiotelescope, as a 

lТnearlв polarТzeН transТt antenna аТtС a beam sТze of about (γ.η/Мos Ψ arМmТn, ТmplТes the 

eбposure of tСe observТnР sessТon ranРТnР from γ to 11 mТnutes at НТfferent pulsar НeМlТnatТons . 

The topocentric TOAs for each observing session are calculated by cross-correlating the mean 

pulse profile аТtС a stanНarН loа-noise template taking into account of signal delay caused by the 

dispersion in each channel. 

The topocentric TOAs are calculated as a fraction of the current day from their beginning 

on the date of observation. Numerical values are expressed as a decimal until the 13th sign. 

Measured in the scale of UTC topocentric TOAs are transformed  into the barycenter of the solar 

system. Barycentric TOAs are counted in seconds, from the beginning of the day of the date of 

observation. Number format consists of 8 decimal digits, which corresponds to the resolution of 

TOAs within 10 nanoseconds (10-8  s). 

The numerical conformity of topocentric and barycentric TOAs is not obvious in view of the 

dynamic divergence of values and the different formats of expression, is provided by planetary 

ephemeris of the solar system, based on the equations of motion of celestial bodies, taking into 

account the position and speed of movement observer in space and the limited speed of propagation 

of the radio signal. The intervals of proper time 1  and 2  measureН  bв НТfferent observers Мan’t 

be “unТquelв” anН “naturallв” МompareН to eaМС otСer. TСe onlв аaв to Нo so Тn General RelatТvТtв 

is to define a 4-dimensional relativistic reference system having coordinate time t , establish a 

relativistic procedure of coordinate synchronization of clocks with respe1ct to t , and convert the 
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intervals of proper time 1  and 2  of each observer into corresponding  intervals of coordinate  

time 1t  and 2t . These two intervals of coordinate time can indeed be compared directly [5,6]. 

According to the principle of relativity, which has formulated by Poincare (1906), all 

physical processes occurring in any inertial system under the same conditions, are identical and 

correspond to the metric of four-dimensional space-time defined by the invariant interval 

  

222222 )()()()()( dZdYdXdTcd  .    (5) 

 

Spatial coordinates and time in the invariant (5) are related by direct and inverse Lorentz 

transformations that define common local time T for any points in three-dimensional space: 
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;  – changed local time of the T. 

 

Lorentz transformations overcome effects of different conditions of observation in the coordinate 

systems due to movement, current position of the observer, signal propagation time, thus leads 

physical processes to common conditions of observations [7]. 

By developing and generalizing the principle of relativity of Poincare, A.A. Logunov 

(1987) extended it without any changes physical entity to non-inertial reference systems as well, 

by showing that the interval (5) is invariant in respect any coordinate system [8].  

It has been shown (Avramenko, 2009) that the equation of the pulsar time (2) is form-

invariant under coordinate transformations, in which the numerical values of the observed rotation 

period are coincide in the barycentric and topocentric coordinate systems at the same epochs of 

the local time. Left part of the equation (2) consists the observed topocentric obsTT  or barycentric 

obsTB  intervals.  The right part contains the intervals calcTT  or calcTB , which are calculated by the 

observed rotation parameters obtained by approximation of obsTT  or obsTB . 
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The equation of  the PT intervals (2) applied to the accelerated topocentric or inertial 

barycentric coordinate systems, takes the form, respectively [9]:  

 

iBBii NPPNPTB )5,0)(1( 2*
0

*
0

                                  

iTTii NPPNPTT )5,0)(1( 2*
0

*
0

  .                          (7) 

 

 Here are:   calcTT TTPT  ;        calcTB TBPT  .     

Left parts of the equations (7) are interpreted as observed topocentric TTobs and 

barycentric TBobs intervals, respectively.  The right parts are the intervals TTcalc and TBcalc 

which are calculated according to the observed rotation parameters of pulsar obtained by 

approximation of the TTobs and TBobs, respectively. 

On the example of the pulsar B0809 +74  Figure 3 shows the intervals TTobs and TBobs 

and their differences on the two-year observations 2006 – 2008 yrs. at the radio telescope LPA 

FIAN (Pushchino). 

 

 
 

 

) the observed intervals (up)        b) differences of the observed and calculated 

and their difference (down)          intervals of  (up) and В (down) 

Fig. 3. Observed topocentric () and baricentric (В) intervals of the PSR 0809+74 (left),  

inconsistency of the intervals in the coordinate systems (right). 

 

Monotonically growing intervals TTobs and TBobs have a cyclical changes of their difference 

(left, up) due to the orbital motion of the Earth around the Sun (left, down). At these intervals in 
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accordance with equations (7) have been determined the values of the rotation period TTP*
 and  

TBP*
 on the epoch MJD of the observed pulse counted in local coordinate time scales:  

TTP*  = 1.29224151775083 s  at  MJD  = 54080.0098 

TBP*  = 1.29224151775088 s  at  MJD В = 54080.0137 

Difference in the values of the observed rotation period in the coordinate systems 

corresponds to the difference of  the epoch of pulse observed in the coordinate systems:  

86400)(**  TTTBTTTB MJDMJDPPP  , s.   (8) 

Here are:  = 1,67610-16 s s-1 [7]; TTobs – Вobs = – 332.96872 s (LPA, Fig. 3a)       

Note that the value of period in the Cat. [3]: P = 1.292241446861(…) s at MJD = 49162.0(…) is 

consistent with the (8), but adopted in the Catalog accuracy is insufficient for nanosecond precision 

and subnanosecond resolution of the measured intervals of pulsar time.  

This is an evidence of the principle of relativity: the physical process of periodic radiation 

of pulsar observed in barycentric and topocentric coordinate systems under the same conditions, 

is the same. The numerical values of the observed rotation period are coincide in any coordinate 

systems at the same epoch of local time.  

Figure 3b presents the differences Tobs– Tcalc and Вobs– Вcalc that show 

inconsistency of intervals expressed in the metric of General relativity (GR) based on the 

numerical ephemeris, and metric of Special relativity (SR) based on the parametric form of PT 

intervals, in both topocentric and barycentric coordinate systems. The differences of observed and 

calculated intervals are located in the same range of values in both coordinate systems. Standard 

statistical evaluation of their small inconsistency is about of 20 ns within the two-year span. This 

inconsistency can be associated with the inaccuracy of coordinate transformations of the intervals 

from metric GR to metric SR and the unmodeled variations of  the atomic time scales using for 

measuring of TOAs. 

Consistency of the observed rotation parameters and pulsar time intervals confirms the 

coherence of the periodic radiation of pulsars. This means equivalence of pulsar time scale in the 

Cartesian coordinate system, the set of which is a single natural standard 4-dimensional space-

time. 

Thus, the intervals of coordinate pulsar time, determined by the observed rotation 

parameters, are synchronized  and can indeed be compared directly in the coordinate systems.  
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Metrical unity of time and space in the observed periodic radiation of pulsars 

In order to realize the attainable precision of modern astronomical observations and to 

understand their physical meaning, it is necessary to use relativistic model of the observed physical 

processes. Effects of the theory of relativity can not be reduced to only small corrections to the 

Newtonian models. On the contrary, the whole concept of astronomical reference systems and 

astronomical observations should be adapted in the framework of the theory of relativity [5]. 

Modern relativistic systems of astronomical observations are based on the theories of the 

motion of the solar system bodies in the gravitational field of the Sun and the planets, and on the 

ephemeris time scales. Definition of ephemeris time scales associated with the geocentric theory 

of the motion of the Sun and the heliocentric theories of planetary motion. In the dynamic 

ephemeris model are taken into account the mutual perturbations of large planets, the Moon, the 

largest asteroids in the framework of General Relativity. Argument the heliocentric ephemeris is 

barycentric dynamic time TDB. Argument of the geocentric ephemeris of the Sun, the Moon and 

the planets are terrestrial time TT [10]. 

In the relativistic model of planetary ephemeris the barycentric TCB and the geocentric TCG 

coordinate time scales are connected respectively with barycentric dynamic time TDB and 

terrestrial time TT by a four-dimensional transformations, those at which to implement them could 

use the International Atomic Time TAI [13]. The basic unit of TAI and TT is the SI second, and 

the offset between them is conventionally 32.184 s:  

 

        TCB= DB+LB (JD –24443144.5)*86400c; 

TCG=  +LG (JD –24443144.5)*86400c;      (9) 

          TAI– UTC= c(i);  TT(TAI) = TAI+32,184 c. 

 

Here are: 

TCB, TCG – barycentric, geocentric coordinate time, 

DB – barycentric dynamic time, 

 – terrestrial time. 

Constants of transitions to the coordinate time are equal: 

 

                       LG= 6,969290134 10-10; 

                       LB= 1,55051976810-8. 
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Within the framework of the GRT, the rate of an atomic clock depends on the gravitational 

potential and its motion with respect to other clocks; thus the timescale entering the equations of 

motion (and its relationship with TAI) depends on the coordinate system to which the equations 

refer. In 1991 the IAU adopted resolutions introducing new timescales which all have units of 

measurement consistent with the unit of time, the SI second. Terrestrial Time (TT) is used for 

geocentric ephemeris, and Barycentric Dynamical Time (TDB) is used for ephemeris referred to 

the solar system barycenter. TDB and TT differ by small periodic terms (arising from the transverse 

Doppler effect and gravitational red-shift experienced by the observer) that depend on the form of 

the relativistic theory being used: the difference includes an annual sinusoidal term of 

approximately 1.66 ms amplitude, planetary terms contributing up to about 20 mks, and lunar and 

diurnal terms contributing up to about 2 mks. TT differs from TAI by a constant offset, which was 

chosen to give continuity with ephemeris time.  

Differences TT – TDB depend on the coordinates of all appropriate bodies the ephemeris, 

so the more accurate values of these differences are achieved by numerical integration using the 

following formula for the corresponding ephemeris [11]:  
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Here )(),( tt   – are mass function, position and speed of massive bodies of the solar system.  

Calculated by the formula (10), divergence of the TT – TDB for the ephemeris EPM 2004 and 

EPM 2008 does not exceed (1 – 2) ns in the 140-year evaluation interval [12].  

The analytical pulsar time scales that are relativistic on physical properties of the observed 

radiation, are naturally compatible with the local time of the observer in any coordinate reference 

system. Pulsar time scales TT and TB are agreed with nanosecond accuracy in topocentric (Earth) 

and the barycentric coordinate  observervation systems oriented on the angular axes at the 

International Celestial Reference frame ICRF-ICRS. The intervals of observed events of pulsar 

radiation obs, calculated by the rotation parameters of pulsar, are the same as the coordinate 

pulsar time scales TTPT  and TBPT  in Cartesian topocentric and barycentric coordinate systems 

of the observer. In contrast to the ephemeris scales TT and TDB, the pulsar scales TTPT  and 

TBPT  are determined analytically by the observed parameters of pulsar, and their numerical values 
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coincide with the observed intervals TTcalc and TBcalc, which are extended to any point in space 

of topocentric or barycentric Cartesian coordinate system: 

 

calcTT TTPTTT  ;  calcTB TBPTTDB  .                    (11)  

 

As a result, at any point on the Earth, the location of which is known, the relativistic pulsar time 

scales synchronize the local atomic scales in the topocentric coordinate system. 

So the conversion of the coordinate pulsar time intervals to the form of invariant equations 

in which the variables are the observable parameters of the pulsar's rotation, revealed the identity 

of the pulsar time scales in any spatial reference systems that are completely equal for observer. 

The identity of the metric properties of the pulsar time for both – the numerical and analytical 

representations of the observed intervals in the spatial reference systems, confirms the equivalence 

of the metric of general relativity (GRT) and metric of special relativity (SRT). A set of 

parameterized pulsar time scales in spatial systems, oriented in the angular directions to the 

International Celestial Reference Frame (ICRF), constitute a single astronomical 4-dimensional 

reference of time and space based on the periodic radiation of the pulsars and the spatial 

coordinates of the extragalactic sources – quasars.  

 

Conclusion 

The identity of the pulsar time intervals obtained in numerical form by the planetary 

ephemeris and approximated in analytical form by the rotation parameters of the pulsar, confirm 

the equivalence of the metric GR and metric SR. 

The rotation parameters of the pulsar obtained from the equations of the observed intervals, 

are the same in any coordinate system at coincide epoch of local coordinate time, irrespective of 

choice of the initial epoch and duration of observation.  

Intervals of coordinate pulsar time, which are determined by the observed rotation 

parameters with inconsistency within 10-18-10-19 for 40-year duration of observations, are the 

precise astronomical 4-dimensional relativistic reference measure within the Solar system that are 

2-3 orders exceeds of the atomic clock standards. 

Thus, coordinate pulsar time scales determined by the observed rotation parameters of the 

pulsar, are the physical implementation of the barycentric dynamical time TDB and unreduced 

topocentric time TT. Together with reference ICRF-ICRS, to which are oriented Cartesian 

observational systems and planetary ephemeris, the parametric pulsar time scales constitute a 
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single astronomical 4-dimensional reference system based on the periodic radiation of the pulsars 

and the spatial coordinates of the quasars. 
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