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Fabri-Perot Resonator With Periodic Structures As Reflecting 

Mirrors Being A Basis For Gravity Waves Detection  
 

Vladislav I. Pustovoit 
Scientific and Technological Center of Unique Instrumentation of RAS,  

Moscow 117342, Butlerova str., 15 

e-mail: vlad_pst@yahoo.com 

 

The task on diffraction of electromagnetic wave on periodic structures, forming Fabri-Perot interferometer, is 

solved. Unlike standard Fabri-Perot interferometer in the interferometer being considered, reflecting periodic 

structures are used as mirrors. Instrument function of such resonator is found and it is shown that under 

fulfillment of certain phase relations appear exponentially narrow regions of radiation transmission, position 

and widths of which depend on a distance between “mirrors” and periodic structures properties. It is shown 

that effect of radiation “leaking” through two reflecting periodic structures, forming Fabri-Perot resonator, 

constitutes classical counterpart of a known quantum effect - particles resonance tunneling through two 

potential barriers under the condition that incident particle energy coincides with energy of quantum level of 

potential box formed by two barriers. 

 It is suggested to use such Fabri-Perot resonators for measurement of small displacements of one mirror 

relatively to the other, and in particular, for gravity waves registration. Variation of interference pattern of 

Mach-Zehnder interferometer, in the legs of which such Fabri-Perot resonators are located, is analyzed, and 

it is shown that sensitivity of gravity waves registration by such technique substantially exceeds the known 

ones being  used for example in LIGO and LISO installations at present.  

 It is indicated that use of periodic structures instead of mirrors in standard Fourier-spectrometers opens 

new capacities regarding the creation of compact Fourier-spectrometers with quite high spectral resolution, 

however spectral measurements range in such spectrometers will be narrower in comparison with standard 

ones. 

 

1. Introduction 
One of the most interesting problems of modern physics is direct experimental validation of gravity 

waves existence [1-3].  The idea of Fabri-Perot resonator in each leg of  Michelson’s  interferometer 

underlies quite expensive experimental facilities  being built. Mirrors, forming Fabri-Perot 

resonator are used as free hanging trial masses, distance between which varies under the influence 

of gravity wave. The idea of such laser interferometer as a technique of gravity waves detection, 

was first suggested in the work by M.E. Gertsenstein and the author in 1962 [4]. Minimum 

displacement of one mirror with respect to another, obtained by the present moment at experimental 

installation LIGO in the USA, is about 10
-16

 cm, however, for reliable direct experimental evidence 

of gravity waves existence it is necessary to increase sensitivity  of such gravity antennas at six 

more orders.  

 The problem of sensitivity enhancement of such systems leads to the necessity to   manufacture 

mirrors with great reflection factor, more than 1 – 10
-5

, or further enlarge interferometer legs as it is 

suggested to do in the space version of the system  (LISO project, see [1,3]).  

 In the present work it is suggested to use as reflecting mirrors, forming Fabri-Perot optical 

interferometer, reflecting periodic structures, which as it will be shown below, possess 

exponentially narrow laser radiation band pass. This allows suggesting new diagrams of gravity 

waves detection having much higher sensitivity. 

 

2. Fabri-Perot resonator with periodic structures as reflecting mirrors 
Let Fabri-Perot resonator be formed by two flat periodic structures which are located at a distance a 

relative to each other, as it is shown in fig.1. Radiation propagates from left to right. First it falls to 

the first periodic structure and under fulfillment of synchronism conditions, i.e. when period of this 

periodic structure is close to or equal to a half of incident radiation wavelength, radiation is 

reflected from this structure and only some part falls to resonator. A small part of radiation falls to 
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the second structure, then it is reflected and interferes with radiation inside resonator. If we wait for 

some time, the amplitude of wave steady-state electromagnetic field inside resonator will 

substantially exceed the amplitude of incident field, and then some part of this radiation will emerge 

from resonator. As it will be shown below, the amplitude of emergent field will be practically equal 

to the amplitude of incident radiation [6]. Our aim is to find intensity of radiation emerged from 

resonator, formed by two periodic structures, or rather find instrument function of such resonator.  

 Problem-solving technique in this case is the following. First we find task solution on light 

propagation in periodic structure under arbitrary boundary conditions and then we join solutions at 

the boundaries, found for each periodic structure. As in the case of standard Fabri-Perot 

interferometer the distance between periodic structures (“mirrors”) in one of the interferometer’s 

legs will vary under the influence of gravity wave, thereby varying intensity distribution in 

interference pattern.  Substantial difference of such resonator from a standard one is that under 

certain phase relations (see below), instrument function acquires exponentially narrow band pass 

with quite sharp boundaries. The last means that sensitivity of such interferometer under phase 

variation or small displacement of reflective structures relatively to each other turns out to be rather 

high, and under rather obtainable in practice parameters can exceed the LIGO system sensitivity.  

 

 
 

 Fig. 1. Fabri-Perot resonator with periodic reflecting structures without mirrors 

 

 Let periodic structure be formed so that its inductivity ( )xε  could be written as: 

( ) ( )0x Cos q xε = ε + ∆ε . 

 Here ∆ε  - amplitude of inductivity variation, at the same time 0∆ε << ε , q- periodic structure 

wave vector. Then, as it is known, [5-7], light propagation in such periodic structure can be 

described by shortened combined equations: 

( ) ( )

( ) ( )

0

0 R

R

0 0

E
E ,

E
E .

i k x

i k x

d x
i k x e

dx

d x
i k x e

dx

ε

ε

− ∆

∆

= ∆

= − ∆

       (1) 

 Here 0E  и RE - amplitude of incident and reflected wave correspondingly, k0 – radiation 

wavevector for which accurate synchronism condition is fulfilled, and ∆k defines Bragg condition 

mismatch. Equations (1) describe two waves propagating towards each other, synchronism 
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conditions for which have the form: 
in difk k q k+ − = ∆ . For optically isotropic medium under 

accurate fulfillment of synchronism conditions k∆ =0, and 
0 /2in difk k k q= = = . Steady-state 

equations (1) describe light propagation in the first (left) periodic structure (((( ))))0 x L≤ ≤≤ ≤≤ ≤≤ ≤ , as for 

equations describing light propagation in the right periodic structure in the region  

(((( ))))2L a x a L+ ≤ ≤ ++ ≤ ≤ ++ ≤ ≤ ++ ≤ ≤ + , in them , unlike equations (1), ∆ε∆ε∆ε∆ε  will contain phase multiplier i
e

ϕϕϕϕ , where ϕϕϕϕ  

- phase difference between periodic structures. (ϕϕϕϕ  - is such phase difference which occurs between 

the first and the second structures, as a result of the first periodic structure continuation to the 

region 2L a x a L+ ≤ ≤ ++ ≤ ≤ ++ ≤ ≤ ++ ≤ ≤ + . Such note is a sequence of use of one an the same system of coordinates 

for both periodic structures). It is necessary to add boundary conditions to equations (1) and similar 

equations for the second periodic structure: 

(((( )))) (((( )))) (((( ))))
(((( )))) (((( )))) (((( ))))

0

0

-ika '

0 R R

' -ika '

0 0 R

E x=0 E x=L E x=L+a

E x=L+a E x=L E x=2L+a

E , ,

, ,

e

e

= == == == =

= == == == =
      (2) 

where light wave fields in the second periodic structure are marked with accent. Boundary 

conditions in the form of formulas (2) are obtained from ordinary boundary conditions after 

extraction of free space fields between periodic structures. Solution of the boundary problem (2) 

leads to the following expression for amplitude of wave, emerged from resonator: 

( ) ( )

( ) ( ) ( )
2 22

2 2 4

2
,

1 2 1 1

2'

0

W i W 2 W 20

4 - 1 Exp ia k - 2 i WE (x = 2L+ a)
=

E (x = 0)
e e e i e i

ξ ξ

ξ ξ ξ ξΨ

 Γ + Ψ + 
 − + + − − + + − 
 

 (3) 

 Here 
2

k
ξ ≡

∆
Γ

,  
2

1W L ξ≡ Γ − ,  0k≡ ∆εΓ ,  - 2 2 a k a ξ ϕΨ ≡ + Γ + . From formula  

(3) it is seen that under fulfillment of conditions for phase: 

( ) ( ) ( )2 1 , 0, 1, 2,... , 2 m mArcSin ξ π+ = ± ±Ψ + =  (4) 

amplitude at resonator output reaches maximum, and near fulfillment of  accurate synchronism 

conditions, i.e. 0ξ = , it will be equal to amplitude of incident radiation, '

0 0E (x = 2L+ a) E (x = 0)= . 

Such resonant propagation of radiation through periodic structures has simple explanation. From 

quantum mechanics it is known that if free particle has energy, coinciding with energy of quantum 

level between two barriers, then the particle propagates through such barriers. Actually, the 

considered case represents classic counterpart of such resonant tunneling. It is also easy to show 

that field amplitude between periodic structures substantially exceeds field value outside the 

resonator. Solution (3) allows to find intensity of radiation emerged from such Fabri-Perot 

resonator, related to incident radiation intensity 

( )
2

Γ
' 4 W 2 2

0

0

E (x=2L+a) 8e (1-ξ )
L, ,a, , ,

E (x=0) G
Τ= ≡ ϕ ξ       (5) 

where denominator in formula (5) has the form: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 4 2 2

2

3 4 4 1 2

4 2 1

2

2

G Ch 4W +4Ch 2W C o s Sh W

Sh W C os S in Sh 2W

 = − ξ + ξ + −ξ + − ξ + 

 + − ξ −ξ
 

Ψ

Ψ Ψ
 (6) 

 Here ( )ΓL, ,a, ,ϕ ξΤ  - instrument function of Fabri-Perot resonator, formed by two periodic 

structures. From expression (5) and (6) it is seen that in the interval  2 2k− Γ < ∆ < Γ      under 0Ψ =   

intensity of the propagated radiation (for 1LΓ > ) is exponentially small: incident radiation 

experiences strong reflection. Totally different situation will be under 0, 0a ≠ ϕ ≠K . In this case 

within interval    2 2k− Γ < ∆ < Γ  appear quite narrow maximums of radiation transmission. The 



 

9 

location of m-th maximum is defined from condition ( )0 1 2 3m

m
, m , , ,... ,

a
= + = ± ± ±

Γ
π

ξ ξ where 0ξ  

- is defined from equation ( )0 02 2Sin ak a ξ ϕ ξ− + Γ + = . The general form of instrument function 

according to formula (3) is shown in fig.2, there parameters values, under which numerical analysis 

was carried out, are indicated as well. If for example, a=0 and ϕ=0, so that the second periodic 

structure is the continuation of the first one, then from expressions (5), (6) follows solution, 

describing radiation propagation through one periodic structure with doubled interaction length (see 

formula (6.6.8) in book [7]).  

( )
( )

( )
2

2 2

2 1
L, Γ,a=0, 0,

1 2 Cosh 4 L 1

−ξ
Τ ϕ = ξ =

− ξ + Γ −ξ
 

 Under fulfillment of conditions (4) near maximum 0ξ =  instrument function has Lorenz form 

and can be represented in the form: 

( )
( )24Γ

02

1
Γ Γ 1

2Γ 2Γ 1
1

4

L

k k
L, , , , L

ka
 

 
ξ = ξ ≡ ≡ > 

ε+  
+ ξ

∆ ∆
Τ

∆e

.  (7) 

 

 
 

Fig.2. Fragment of instrument function in interval of values  0103,001,0 << ξ . 

Calculation is made according to formula (3) under parameters value: 

 
 

 Here c k∆ω ≡ ∆  - tuning-off value in frequency units, i.e. frequency deviation from value 

0 oc kω ≡ , с  - light speed, 24 Lc e a− Γδ ≡  - maximum’s width. For comparison let us give 

expression for instrument function of standard Fabri-Perot interferometer (see book by Malyshev 

[8], ch.6):    

 

  (8) 
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where R – mirrors reflection factor, l – distance between mirrors, 
c

n - medium refraction indicator, 

1cn ≈ ,  1cn ≈ . Comparing the obtained formula (7) for instrument function with expression (8) we 

come to conclusion that under fulfillment of condition:   

( )
( )

2

2

2
1

21

LR e
l a

R

Γ

< Γ +
Γ−

  (or under la ≈ , 1>>Γa )  
2

4
2

1
L ln

R

 Γ >  − 
, (9) 

interferometer instrument function based on reflecting structures will have narrower maximum then 

standard interferometer.  

 The above obtained conclusions refer to the case of periodic media without absorption and 

under condition of infinitesimal divergence of incident radiation. Absorption may be accounted if in 

the obtained formula (3) we make formal substitution k k -i → γ∆ ∆ , where γ  - light wave damping 

factor in periodic structure. Absorption (or enhancement) of light wave leads to destruction of 

condition of light wave resonant propagation and wave intensity at resonator output will be 

exponentially small. The analysis shows that resonant propagation will be nevertheless possible, if 

damping factor satisfies the following condition: )1(2/ +Γ<< Γ− ae Lγ . For periodic media with 

enhancement, when 0γ < , resonant transmission maximum width diminishes, and sensitivity on the 

contrary increases. That is why to increase sensitivity it is desirable to use periodic structures with 

electromagnetic radiation enhancement, which not only compensates damping, but also sharpens 

radiation transmission maximum. 

Let us now consider a task when periodic structure is formed by a “step” change of medium 

refraction index 

( ) 
= Λ −



1

2

n , 0<x<a,
n x = b a,

n , a<x<L,
        (10) 

at the same time ( ) ( )= + Λn x n x .Using matrix technique for solution of task on light wave 

propagation in such periodic structure (see [7], Chapter 6) we can obtain an expression for light 

wave amplitude at the output from symmetric Fabri-Perot resonator (i.e. under = Λx m , where m  

- a number of layers): 

 

( )

( ) ( )[ ] ( ) ( )[ ] ( )
( ) ( )

= Λ

−
− − − − −− −

−

=

=
2

2 2

2 1

1 2

1 2

2 1

2

2 3 2 3

4

ik( nikl

x m

b n a)a b
A mG G mG G A mG G mG G e eSin Sin Sin Sin

Sin G

n n
Sin kn a Sin kn b

n n

E k

 (11) 

Here l – distance between symmetric periodic structures, k – optical radiation wavevector  and  

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

  
= + +     

  
= + +     

  
= − +     

1

2

1 2

2 2

2 1

1 2

1 1

2 1

1 2

1 2 1 2

2 1

2

2

1

2

ikn aa

ikn bb

n ni
A e Cos kn b Sin kn b ,

n n

n ni
A e Cos kn a Sin kn a ,

n n

n n
G Arc Cos kn a Cos kn b Sin kn a Sin kn b .

n n

 (12) 

The obtained formulas describe radiation propagation in periodic structures and allow to find 

change of interference pattern, formed by two beams in interferometer legs, and find radiation 

intensity at the output from Fabri-Perot resonator as well. As it is seen from expression (11), this 

formula is similar to expression (3) and describes behavior of Fabri-Perot interferometer instrument 
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function for a step periodic structure. Under small values of refraction indices difference formulas 

(3) and (11) are similar. 

 

3. The technique of gravity waves detection 
As it is known [1,4] under the influence of gravity wave the distance between any two free 

substances (points) varies  

( )1l l h= + ,               (13) 

where h  -  gravity wave amplitude. Let polarization and direction of gravity wave propagation are 

so that only  dimensions along the direction x- one of   interferometer’s legs with  Fabri-Perot 

resonators, vary. Optical diagram of measurements with the aid of  interferometer is shown in 

fig.3). (This is Mach-Zehnder interferometer in two legs of which Fabri-Perot resonators are 

located).  Then light wave amplitude in one of interferometer’s legs will change, and therefore 

waves interference pattern will change as well. Considering interferometer’s legs optical lengths as 

equal, we will find variation of interference pattern. For that, according to formula (10) in 

expression (3) we make substitution ( )a a 1+h→ . Using the known procedure we can discriminate 

interference term proportional to gravity wave amplitude. General formula for variation of 

interference term has the form: 

( ) ( ) ( )
'

0

0

, , E (x=2L+a)
, , , , . . ,

2 E (x=0)

A a L
Int A a L a h A a L k c

a

 ∂  
= ≡ +  ∂   

ξ
ξ ξ  (14) 

where h – dimensionless gravity wave amplitude. When making conclusion (11) it was assumed 

that both interferometer’s legs have equal legs and distance  a   between periodic structures in 

Fabri-Perot resonator. Substituting values for light wave field   ( ), ,A a L ξ   from expressions (3), (4) 

and making necessary calculations we will obtain final expression for interference term: 

( )2
4 2

2
1Int 16 Re Re

  = − ξ   
   

ΦΚ i
W e

e h
Zn Zn

   (15) 

Here  ( )2 3 4 2ak a L , ak a LΦ ≡ − + + Ξ ≡ − Γ − Γ −ξ ξ ϕ   and 

( ) ( ) ( )
2 22

2 2 41 2 1 1
 ≡ − + + ξ − −ξ + ξ + −ξ 
 

ΨW i W 2 W 2Zn e e e i e i , (16) 

( ) ( ) ( )( )2
2 2 4 2 4 4 22 2 2 2 1 2 1 1i 2W i W W W Wi a e 1- e (k ) ake i e e e eΦ − ΞΚ ≡ − Γ + − − + − + − −ξ ξ ξ ξ ξ . (17) 

 The obtained formulas (12) – (14) allow to estimate sensitivity of the suggested technique of 

measurement on interference pattern variation. The most easy way is to make it for zero maximum, 

i.e. near 0=ξ , by way of comparing line contour widths. Let us consider sensitivity of measuring 

technique in LIGO installation, in which standard Fabri-Perot interferometer with free hanging 

mirrors is used. The mirrors reflection factor R, obtained by the present moment is equal to 1- 6 10
-

6
, and distance between mirrors l = 4 10

5
sm.  Substituting these values to formula (8), for 

instrument function of standard interferometer we will obtain:   

[ ]( )[ ] 121161011,11
−

−∆×+= smkT . 

 Now we will compare it with instrument function of interferometer with periodic structures as 

reflecting mirrors according to formula (7). For values of parameters: a = 2000π sm, Г =12 sm
-1

 

(that corresponds to 
3102,1 −×≈∆ε , 

-1410 smk = ) and L = 0,47 sm, numerical calculation result 

coincides with estimation according to formula (8) for F PT − .(The number of half-wave layers will 

be: N=kL/π = 1400).  If Г = 20 sm
-1

  and L = 0,62 сm, under the same value of a, then formula (7) 

will give   

. [ ]( )[ ] 121271057,81
−

−∆×+= smkT . 
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 It is seen that halfwidth of resonance propagation maximum is more than 6 orders smaller than 

corresponding maximum of standard Fabri-Perot interferometer, and that is why sensitivity of such 

measuring technique considerably exceeds sensitivity of standard Fabri-Perot interferometer. 

However region of gravity waves frequencies gω , to which will react such “high-Q” resonance 

system, is restricted  from above by the value 43 24 10.g k c −ω ≤ ∆ ≈  Hz. If the last condition is not 

fulfilled, spatial position of mirrors will not follow the variation of gravity field wave. 

 

 
 
 Fig.3. Optical diagram of Mach-Zehnder interferometer  with periodic reflecting structures. 

 

 

 There is also one more restriction connected with fulfillment principle of uncertainty, at which 

paid attention V.B. Braginskij [1-3]. The principle of uncertainty requires fulfillment of condition 

x p∆ ∆ ≥ h , where h - Plank constant, x∆  - mirror coordinate variation, p∆  - pulse variation. 

Noting that x l h∆ ≈ , where l - distance between mirrors, for minimum value of gravity wave 

dimensionless amplitude, which can be measured without violation of  principle of uncertainty, we 

will obtain 
1

g

h
l m

≥
ω
h

, ( m - mirror mass). For smal π2000== , 43 24 10.g Hz−ω ≈ , 510m g=  

we obtain for 
201006,9 −×≅h . Let us note that this value of h is obtained for distance between 

mirrors of only 628 meters and for gravity wave frequency 3,24 10
-4 

Hz. 

 Let us also note that system considered in this work – Fabri-Perot resonator with periodic 

structures as reflecting mirrors, represents an example of macroscopic quantum system with the aid 

of which it is possible to model quantum systems behavior, for example waves (particles) resonance 

tunneling, limitations in measurements, connected with principle of uncertainty and others. 

 Let us consider now interference term according to formula (18). Conditions under fulfillment 

of which factor under gravity wave amplitude in formula (11) reaches extreme value, as it is easy to 

see, coincide with resonance conditions, i.e. ( )2 1 - Γ2 a k+2 a + ArcSin + πξ ϕ+ ξ = m . 
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Exactly under fulfillment of this condition in formula (13) factor under 4We  vanishes and 

expression (12) reaches its extreme value. Value ξ , under which resonance appears, can be found 

from equation  

( )( )2Cos m a kξ = π + − Γξ − ϕ .         (18) 

 From equation (18) it is seen that if ϕ = π , a k A= π , where  A - any integer , then 0ξ =  will 

be a solution of equation (18). That means that under accurate fulfillment of synchronism 

conditions appears main (with the largest amplitude) resonance. The dependence of interference 

term according to expression (15) near this maximum, 0ξ = , under a = 2000π cm, Г = 30 cm
-1

, L = 

0,47cm, is given in fig.4. From expression (15) and fig.4 it follows that there is a certain interval of 

values a,  ( 1 2a a a≤ ≤ , see fig.4),  inside which coefficient under gravity wave amplitude under the 

selected above values of system parameters, occurs to be rather great: 

. ( ) [ ] hsmaaaInt 0
24102,1)( −×≈ .        (19) 

 Selecting certain value  a within the indicated interval by way of interferometer tuning, (for 

example ( )0 0 00009.a a= + sm) it is possible to obtain conditions, when 2010 hInt( )a ≈ . Optical 

diagram of small displacements measurement and values of distances between “mirrors” an be 

selected so that variation of interference pattern will take place in each leg in counter phase and 

then coefficient in formula (16) will be two times greater. Let us also note that contrast of 

interference pattern is rather high: intensities relation in resonance (maximum) to value outside 

resonance (minimum) is proportional to 4We . 

 In the above estimations the distance between periodic structures was 628 m that is 

considerably smaller then distance between mirrors in LIGO installation. Besides, as it is seen from 

formulas (11)-(15) the use of more high-frequency optical radiation (for example, X-ray one) is 

preferable, and therefore dimensions of system foe gravity waves registration can be considerably 

smaller. As for producing periodic media, the existing techniques allow to do it, for example in 

optical fiber technology it is possible to roll piles of corresponding material, prepared in advance, 

through rolls or produce necessary medium by holographic  techniques [9]. For X-ray radiation the 

most suitable medium could be ideal crystal with small  X-ray radiation absorption. 

 

   
20104×  

 

   
20102×  

 

        0 

 

   
20102×  

 

   
20104×  

 
Fig.4. The dependence of interference term on variation of distance between mirrors (periodic 

structures) near maximum 0ξ =  according to formula (12). Tangent in the point 0a  of maximum can 

be approximated by the right line: 

 
 

 Thus the use of Fabri-Perot resonators with periodic structures as reflecting mirrors opens new 

capacities with regard to creation of small displacements measuring techniques, compact Fourier-
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spectrometers with rather high spectral resolution, stabilization of electromagnetic oscillations, 

super-narrowband filters for various types of waves, and  registration of gravity waves as well.  
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Riddle and problems of the standard cosmological model  
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Недавние данные по анизотропии и поляризации реликтового излучения (WMAP) и  

крупномасштабной структуре Вселенной (каталог галактик SDSS, «лес» линий Lyα) 

позволили независимо восстановить как космологические параметры современного Мира, 

так и начальные условия для его развития – спектр возмущений плотности в 

постинфляционной ранней Вселенной. С одной стороны, это достижение привело к прорыву 

в понимании физики очень ранней Вселенной (например, к запрету хаотической инфляции за 

исключением случая инфляции на массивном скалярном поле) и к созданию стандартной 

космологической модели (состав и структура темной материи, физика реионизации, теория 

образования первых звезд, массивных черных дыр, галактик, скоплений, крупномасштабной 

структуры и др.). С другой стороны, успех стандартной модели, являющийся, по сути,  

триумфом теории гравитации, заострил фундаментальные проблемы физики высоких 

энергий, поскольку такие ‘краеугольные камни’ космологической модели как темная 

материя, темная энергия, бариогенезис и инфляция современная физика описать не в 

состоянии. На повестке дня стоит расширение космологической модели и построение новой 

физики, основные контуры которой намечаются сегодня наблюдательной космологией.  
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Fermion interactions in the nilpotent formalism 
 

Peter  Rowlands  
Department of Physics, University of Liverpool,Oliver Lodge Laboratory, 
Oxford Street, Liverpool, L69 7ZE, UK.  
E-mail: p.rowlands@liverpool.ac.uk 
 

The algebraic nilpotent formalism, applied to the Dirac equation, reduces the basic procedure of relativistic 

quantum mechanics to the definition of a creation operator for the fermionic state. The definition of the 

fermionic state in this form leads on to explicit expressions for bosons, baryons, interaction vertices, vacuum, 

C, P and T transformations, and to nilpotent representations for weak, strong and electric interactions, and 

for the acquisition of mass through the Higgs mechanism. 

 

1. The creation of the Dirac state 

The Dirac state is the most efficient packaging of the 4 fundamental parameters, space, time, mass 

and charge.
1-3

 If we define these fundamental concepts via the respective algebraic units: 

Time  Space  Mass  Charge 

  i  i j k  1 i j k 

pseudoscalar      multivariate vector scalar quaternion 

we can compactify the algebra by defining new composite quantities, which combine the quantized 

and conserved nature of charge with the respective pseudoscalar, vector and scalar nature of time, 

space and mass: 

Energy Momentum  Rest mass 

 ik  ii ji ki   1j 

 E      p   m 

The algebra which results from either the eight primitive units, i, i, j, k, 1, i, j, k, or the five 

composite ones, ik, ii, ji, ki, 1j, is a group of order 64, which is isomorphic to the algebra of the 

Dirac γ matrices. (It can be regarded as equivalent to a particular form of twistor algebra, defining a 

4-dimensional complex space, or as a geometrical algebra of form G(4,4), G(3,3), G(2,3) or G(3,2)). 

And the combination of algebras which produces the five composite units not only affects time, 

space and mass. It also breaks the symmetry between the charges. So we effectively create weak, 

strong and electric charges (w, s, e), with respective pseudoscalar (timelike), vector (spacelike), and 

scalar (masslike), as well as quaternion,.characteristics: 

Weak charge Strong charge  Electric charge 

ik  ii ji ki  1j 

pseudoscalar      multivariate vector scalar 

quaternion quaternion quaternion 

The combined Dirac or fermionic state 

(± ikE ± ip + jm)   

is, in fact, a charge state as well as an energy state. It is a nilpotent or square root of zero:  

(± ikE ± ip + jm) (± ikE ± ip + jm) = –E
2
 + p

2
 + m

2
 = 0 

which means that it is automatically Pauli exclusive. The state vector (± ikE ± ip + jm) may be 

considered as a 4-component column vector or spinor, with components:  

(ikE + ip + jm) 

(ikE – ip + jm) 

(– ikE + ip + jm) 
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(– ikE – ip + jm) 

The four parts include: 

fermion / antifermion         ± E  

spin up / spin down ± p (or σσσσ.p) 

where E and p are either operators or eigenvalues, and for, bound states, may include field terms or 

covariant derivatives:  

(ik∂/∂t + i∇∇∇∇ + jm) 

(ik∂/∂t – i∇∇∇∇ + jm)  

(– ik∂/∂t + i∇∇∇∇ + jm)  

(– ik∂/∂t – i∇∇∇∇ + jm) 

Only the first or lead term, however, provides independent information. The others follow an 

automatic pattern of sign changes. So, it will often be convenient to write down only this lead term, 

with the rest assumed. We can, therefore, as always, express the conservation principle in terms of 

an equivalent nonconservation principle in which the ‘amplitude’ (± ikE ± ip + jm) is produced by 

the action of a differential operator (± ik∂ /∂t ± i∇∇∇∇ + jm) acting on a ‘phase’ term, and we only 

really need the first term of this operator (ik∂ /∂t + i∇∇∇∇ + jm). In principle, this is the only 

independent physical information. 

For a ‘free’ fermion, the phase (exp (–i(Et – p.r)) provides the complete range of space and 

time translations and rotations, but if the E and p terms represent covariant derivatives or 

incorporate field terms, then the phase term is determined by whatever expression is needed to 

make the amplitude nilpotent. In other words, we don’t require either the Dirac equation or a 

specification of 4 terms for quantum physics, only the operator: 

(ikE + ip + jm) . 

Relativistic quantum mechanics is thus specified entirely by the definition of a creation operator, 

acting on a vacuum (the ‘rest of the universe’), with which it is self-dual. In principle, the fermionic 

state and vacuum are the respective extremes of locality and nonlocality, each of which defines the 

other. The phase is the means by which they are connected. In the case of a particle bound by some 

interaction, the phase changes from absolute to partial variation, just as the amplitude changes from 

complete to partial conservation. In principle, the E and p terms have to incorporate all the 

interactions and fields to which the particle is subject; that is, the creation of a particle has to take 

into account all other existing particles. The fermion creation operator already defines a quantum 

field integral. 

The ½-integral fermionic spin, and the one-handed helicity for massless fermionic states, is a 

routine derivation from the nilpotent formalism, as it is for the conventional one. The arbitrary 

direction of spin in the case of the free fermion can be described by analogy with the state of 

circular polarization, and we can use the nilpotent structure to define Stokes polarization parameters 

of the form: I = (kE) (–kE) + (iip + ijm) (iip + ijm); Q = (kE) (–kE) – (iip + ijm) (iip + ijm); u = 

(kE) (iip + ijm) + (–kE) (iip + ijm); v = i(kE) (iip + ijm) – i(–kE) (iip + ijm); so that I
2
 = Q

2
 + u

2
 + 

v
2
 = v

2
 = 4E

2
 before normalization. 

 

2. Multiple meanings for i, j, k 

The three quaternion operators i, j, k can be seen to have multiple meanings in the nilpotent 

formalism – as charges; as P, C, T transformation operators; and as vacuum generators. 
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 (1) The primary meaning is charge, or source of the weak, strong and electric interactions. The 

operators do not necessarily imply the existence of nonzero units of charge. They act, rather, as sites 

where charge units may be generated. 

(2) Premultiplying the nilpotent gives the discrete partitions of vacuum associated with the three 

types of charge: 

k (ikE + ip + jm)     weak vacuum 

i (ikE + ip + jm)     strong vacuum 

j (ikE + ip + jm)     electric vacuum 

because postmultiplication of (ikE + ip + jm) by any of these terms leaves the state unchanges after 

normalization. 

(3) Pre- and postmultiplying the nilpotent transforms via T, P or C, the three discrete symmetries: 

k (ikE + ip + jm) k      T transformation 

i (ikE + ip + jm) i     P transformation 

–j (ikE + ip + jm) j     C transformation 

The three discrete symmetries, and the CPT combination can be expressed as follows: 

P          i (ikE + ip + jm) i = (ikE – ip + jm)  

T           k (ikE + ip + jm) k = (–ikE + ip + jm)  

C           −j (ikE + ip + jm) j = (–ikE – ip + jm)  

CPT    − j (i (k (ikE + ip + jm) k) i) j = (ikE + ip + jm) 

CPT connects relativity with causality, only in the nilpotent formulation, which links m via a 

quaternion operator with E and p. In special relativity, we take the conjugate nilpotent (ikt + ir + 

jτ), where τ, the proper time, is the term required for causality. In summary, the meanings of the 

quaternion operators i, j, k include: 

i      strong charge  strong vacuum  P   

j      electric charge  electric vacuum  C 

k     weak charge  weak vacuum  T 

The lead term in the Dirac nilpotent determines whether the state is fermion / antifermion, spin 

up / down. The three additional terms then become strong, weak and electric vacuum reflections of 

the state defined by the lead term. Because of the complete duality of the operator and amplitude, 

there is equivalent duality between fermion and vacuum, the action of the operator on vacuum 

(phase) producing the fermion (amplitude) as the result. So the expression (ikE + ip + jm) refers to 

either the fermion state or the continuous vacuum which represents the ‘rest of the universe’, and is 

responsible for zero-point energy. The charges act as a discrete partitioning of the continuous 

vacuum, a localization of the vacuum in a 3-D ‘charge space’ (and, by symmetry, an angular 

momentum space), and the three vacuum coefficients can be seen as originating in (or being 

responsible for) the concept of discrete (point-like) charge: 

k (ikE + ip + jm)          weak vacuum  fermion creation 

i (ikE + ip + jm)           strong vacuum  gluon plasma 

j (ikE + ip + jm)           electric vacuum  SU(2) 

The three discrete partitions are entirely orthogonal or independent of each other, and the three 

terms following the lead term in the 4-component Dirac spinor are effectively the ‘empty’ or 

alternative (‘virtual’) states to which the fermion could switch without a change in the magnitude of 

energy or momentum. (They could be considered as comparable with the ‘holes’ in condensed 

matter theory.) The physical manifestations of the fermion / vacuum duality include zitterbwegung 

and ½-integral spin. Taking a metaphor from biology, we could describe the motion of the fermion 
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and vacuum combination as that of a double helix. (The same also applies to bosonic combinations 

of fermions and antifermions, where the directions of the helices may be either in the same or 

opposite senses, depending on the component spins.) 

 

3. Interaction vertices 

Where there is an interaction vertex between two fermionic / antifermionic states, the signs of E and 

p of the second term, with respect to the first, will also determine the nature of the bosonic or 

combined state which may be created. Because there are three operators involved – i, j, k – there are 

also three possible bosonic states. Any transformation of a fermionic state can be represented as a 

bosonic state in which the old state is annihilated and the new one created. 

Because the state vector always represents four terms with the complete variation of signs in E 

and p, the interaction vertex between any fermion / antifermion and any other will always be a real 

scalar (unity under normalization), with amplitude: 

(ikE1 + ip1 + jm1) (ikE2 + ip2 + jm2) 

except in the case of identical fermions, where it will be 0. When the E, p and m values become 

numerically equal, the vertex can be defined as a new combined bosonic state, with a single phase 

(which depends only on the numerical values of E and p). There are three such states, composed 

respectively of fermion and fermion transformed under T, C or P: 

Spin 1 boson: 

(ikE + ip + jm) (– ikE + ip + jm) T 

Spin 0 boson: 

(ikE + ip + jm) (– ikE – ip + jm) C 

Bose-Einstein condensate / Berry phase, etc.: 

(ikE + ip + jm) (ikE – ip + jm) P 

We can consider these bosonic types to be the respective mediators of weak, electric and strong 

nonlocal interactions, that is, interactions between fermion and vacuum. (The local interactions, 

between fermion and fermion are mediated by spin 1 bosons, (ikE + ip + jm) (– ikE + ip + jm), in 

which there is a change from one E state to another, through the acquisition of a scalar potential.) 

Significantly, the spin 0 bosonic state cannot be massless, because, if it is nilpotent it 

automatically becomes zero. 

(ikE + ip) (– ikE – ip) = 0 

This becomes a significant factor in the Higgs mechanism. It also implies that massless fermions 

cannot have the same handedness as massless antifermions. The conventional derivation of spin 

assigns left-handedness to fermions. 

 

4. Baryons 

We have postulated an entangled system of two nilpotent states (fermion and antifermion) to 

describe bosons. Can we extend this idea to three nilpotent states to describe baryons? 

Conventionally, we consider a baryon to be made up of three fermionic components, to which we 

assign colour to overcome Pauli exclusion. Can we relate this concept of colour to the fundamental 

structure of nilpotents? Clearly we cannot have a state vector composed of three identical fermions, 

because 

(ikE + ip + jm) (ikE + ip + jm) (ikE + ip + jm) = 0 . 
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But we get nonzero solutions if only one of the three states has an active momentum component, 

exactly as supposed in the quantum mechanical description of spin, where there are three possible 

directions for the spin vector, but only one can be defined. That is, 

(kE + ii p + ij m) (kE + ij m) (kE + ij m) → (kE + ii p + ij m)  

(kE + ij m) (kE + ii p + ij m) (kE + ij m) → (kE – ii p + ij m)  

(kE + ij m) (kE + ij m) (kE + ii p + ij m) → (kE + ii p + ij m) 

after the application of normalization. So it is possible to have a nonzero state vector if we use the 

vector properties of p (and, more specifically, σσσσ.p) and the arbitrary nature of its sign (+ or –). In 

principle, this is nothing more than a representation of the arbitrariness of the direction of fermionic 

spin using the vector properties of p to create spatial, as well as temporal, variation (and the same 

applies to the combined integral spin in those bosons, such as mesons, which use the same vector 

properties). 

Now, a state vector of the form, privileging the p components: 

(ikE ± iipx + jm) (ikE ± ijpy + jm) (ikE ± ikpz + jm) 

has six independent allowed phases, i.e. when 

p = ± ipx , p = ± jpy , p = ± kpz  

but these must be gauge invariant, i.e. indistinguishable, or all present at once. One method of 

picturing this is to imagine an automatic mechanism of transfer between them. If we write the 

phases in the form 

(kE + ii ipx + ij m) (kE + ii jpy + ij m) (kE + ii kpz + ij m) +RGB 

(kE – ii ipx + ij m) (kE – ii jpy + ij m) (kE – ii kpz + ij m) –RBG 

(kE + ii ipx + ij m) (kE + ii jpy + ij m) (kE + ii kpz + ij m) +BRG 

(kE – ii ipx + ij m) (kE – ii jpy + ij m) (kE – ii kpz + ij m)  –GRB 

(kE + ii ipx + ij m) (kE + ii jpy + ij m) (kE + ii kpz + ij m) +GBR 

(kE – ii ipx + ij m) (kE – ii jpy + ij m) (kE – ii kpz + ij m) –BGR  

we see that they have exactly the same group structure as the standard ‘coloured’ baryon 

wavefunction made of R, G and B ‘quarks’, 

ψ ~ (RGB – RBG + BRG – GRB + GBR – BGR)   

That is, they have an SU(3) structure, with 8 generators, and, since the E and p terms in the state 

vector really represent time and space derivatives, we can replace these with the covariant 

derivatives needed for invariance under a local SU(3) gauge transformation.A significant aspect of 

this SU(3) symmetry or strong interaction is that it is entirely nonlocal (though, because the 

mediators are massless, they become equivalent to the spin 1 bosons required for a local 

interaction). That is, the exchange of momentum p involved is entirely independent of any spatial 

position of the 3 components of the baryon. We can suppose that the rate of change of momentum 

(or ‘force’) is constant with respect to spatial positioning or separation. A constant force is 

equivalent to a potential which is linear with distance, exactly as is required for the conventional 

strong interaction. 

The baryon representation can only exist as a unified or entangled state. It is not really a 

representation of a combination of 3 independent fermions. Such a representation is impossible in a 

conventional spinor formulation, with terms such as px + ipy, or in any representation in which the 

momentum operators cannot show the full affine nature of the vector concept. 

Very significantly, the full symmetry between the 3 momentum components can only apply if 

the momentum operators can be equally + or –. With all phases of the interaction present at the 

same time (perfect gauge invariance), this is equivalent to saying that left-handedness and right-
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handedness must be present simultaneously in the baryon state. In other words, the baryonic state 

must have non-zero mass via the Higgs mechanism. 

The mediators of the strong force will be six bosons of the form: 

(ikE – iipx) (– ikE – ijpy)  

and two combinations of the three bosons of the form: 

(ikE – iipx) (– ikE – iipx)  

These structures are, of course, identical to an equivalent set in which both brackets undergo a 

complete sign reversal. The important thing here is that applying any of these mediators will 

produce a sign change in the p component that leads to mass. Thic can be considered as a parity (P) 

transformation; through the quaternion operator i, the one associated with the strong charge. 

 

5. The Higgs mechanism 

Imagine a virtual fermionic state with, no mass, in an ideal vacuum: 

(ikE + ip)  

(Since vacuum is concerned principally with the nonconserved aspects of the fermion state (i.e. the 

variation in space and time, represented by the phase), we can define such a state without mass.) An 

ideal vacuum would maintain exact and absolute C, P and T symmetries. Under C transformation, 

(ikE + ip) would become  

(– ikE – ip) 

with which it would be indistinguishable under normalization. No bosonic state would be required 

for the transformation. 

If, however, the vacuum state is degenerate in some way under charge conjugation (as 

supposed in the weak interaction), then 

(ikE + ip)  

will be transformable into a state with the same energy and momentum which can be distinguished 

from it, and the bosonic state (ikE + ip) (–ikE – ip) will necessarily exist. However, this can only be 

true if the state has nonzero mass and becomes the spin 0 ‘Higgs boson’: 

(ikE + ip + jm) (–ikE – ip + jm) 

And this will also only be possible if the mass is confined to a single sign, which we may, by 

convention, define to be positive. 

 

6. SU(2)L × U(1) 

The acquisition of mass in the nilpotent formalism can be related to the capacity for change of sign 

in the p term with respect to that of the E term. In principle, a weak isospin transition can be seen as 

a change of the form 

(ikE + ip + jm) → α1 (ikE + ip + jm) + α2 (ikE – ip + jm) 

   isospin up   isospin down 

The down state introduces a degree of right-handedness which is not present in the up state, and 

which is not weak in origin. 

Where the strong interaction is not involved, a partial p sign transition (involving vacuum 

operator i) can only be accomplished by involving the electric vacuum operator (j) as well as the 

weak one (k). The weak interaction preserves left-handedness in fermionic states and right-

handedness in antifermionic states. So, in any pure weak transition, the anti-state to the state to be 

annihilated and the state which is to be created must exist as a spin 1 bosonic combination.  
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But fermion states with mass also carry a degree of right-handedness. A transition from left- to 

right-handedness, involving only fermionic states (not antifermionic), requires a vacuum which we 

can describe as ‘electric’. Only the electric vacuum carries a transition to right-handedness where 

the vector character (strong interaction) is absent. And, to produce a pure transition from left- to 

right-handedness (and vice versa) without a change from fermion to antifermion requires an 

electroweak combination (jk, equivalent to i): 

(ikE + ip + jm) left-handed fermion 

(– ikE + ip + jm) weak transition to right-handed antifermion 

(ikE – ip + jm) electric transition to right-handed fermion 

Using the concept of electric ‘charge’ as indicating the presence of right-handedness, we may 

identify four possible transitions (taking the ‘left-handed’ / ‘right-handed’ transition to mean ‘the 

acquisition of a greater degree of right-handedness’), and hence four possible intermediate bosonic 

states: 

Left-handed to left-handed 

Left-handed to right-handed 

Right-handed to left-handed 

Right-handed to right-handed  

The left-handed / right-handed transition clearly has the nature of an SU(2)L symmetry, with the 

requirement of 3 generators, which are necessarily massive, to carry the right-handed unrecognised 

by the interaction, and 2 of which carry electric ‘charge’ (+ and –), in addition to one which leaves 

the handedness unchanged.This leaves the fourth transition state or equivalent as an extra generator 

with a U(1) symmetry. If we assume that massive generators are necessary for a ‘weak interaction’, 

and indicate its presence, we can assign the fourth generator to the pure electric interaction. Electric 

charge, however, is not the sole reason for the massiveness (and hence mixed handedness) of real 

fermionic states. So the absence of e does not indicate that a weak generator must be massless. So, 

the 2 generators without e are assumed mixed, the combination producing 2 new generators, one of 

which becomes massless and so carries the pure electric interaction. 

7. Representing interactions via symmetry groups 

There are three fundamental ways of representing strong, weak and electric interactions: 

(1) Through the nilpotent formalism in terms of E and p, and their sign and component changes. 

(2) Through the conversion of E and p in the nilpotent formalism into covariant derivatives directly 

derived from the symmetry groups associated with the transformation mechanisms in (1). 

(3) Through the potential functions which, when added to E (and p), produce the same effect as in 

(2). 

Considering representation through symmetry groups, we note that the Dirac nilpotent has three 

terms of equal status: a pseudoscalar term (± iE) with a natural dipolarity connected with SU(2) 

weak interaction; a vector term (± p) related to strong SU(3); and a scalar term (m) related to 

electric U(1). The three symmetry groups associated with the strong, weak and electric interactions 

come from the spherical symmetry (≡ conservation of angular momentum) necessarily implied 

when we define a point source. U(1) symmetry says that spherical symmetry is preserved whatever 

the length of the radius vector. SU(3) symmetry says that spherical symmetry is preserved whatever 

the choice of axes. SU(2) symmetry says that spherical symmetry is preserved irrespective of 

whether the rotation is left- or right-handed. 

Applying the SU(3) symmetry to the strong interaction in a baryon, we note that the covariant 

derivative under an SU(3) local gauge transformation is: 



22 

( ) .xAigs

αµ
α

2

λ
+∂→∂ µµ  

or, in component form: 

( )xAigip i

siii

α
α

2

λ
+∂→∂=  

( ) .xAgiiE s

0

00
2

α
αλ

−∂→∂=  

We now apply SU(3) generators to the baryon state vector to obtain: 
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In the strong interaction, the p or vector term may be considered as the ‘active’ component, and the 

E term as the ‘passive’ 

It is equally possible to represent the electroweak interaction via covariant derivatives. 

Deriving covariant derivatives with W
µ
 and B

µ
 as the respective 4-vector generators for SU(2) and 

U(1), we have, for left-handed states:  

,
B

giig
µµ

22
′−+∂→∂ µµ

Wτ.τ.τ.τ.
 

and, for right-handed: 

.
B

gi
µ

2
′−∂→∂ µµ  

Applying these covariant derivatives to the nilpotent vertex which describes the weak interaction, 

we find that we can represent three components as ‘active’ and one as ‘passive’. 

,
B
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giiiE
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.igigip
22

03

333

WW τ.τ.τ.τ.τ.τ.τ.τ.
++∂→∂=  

We note here that the electroweak interaction (or the weak component of it) is defined only in 

terms of a 2-component vertex, such as 

(ikE + ip + jm) (– ikE + ip + jm)  

Essentially, because of the pseudoscalar nature of the energy term, associated with k, i.e. the 

mathematical indistinguishability of +i and –i, the weak interaction is always defined as minimally 

dipolar, in the same way as the fermion always defines itself as a dipole with respect to vacuum 

(leading to half-integral spin). We now write a vertex for a standard electroweak transition in the 

form 

(ikE + ip + jm) (– ikE + ip + jm) =  
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By choice of mass term, we can write this as: 

(ikE + ip + jm) (– ikE + ip + jm) =  

= 
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8. Representing interactions by potentials 

In the representation by potentials, using polar coordinates for iiσσσσ.∇∇∇∇, we write the nilpotent potent 

state vector under the action of a point source in the form: 
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Here, we see the origin of the scalar ‘passive’ components for the interactions, for this operator only 

produces nilpotent solutions if the potential term V(r) incorporates an inverse linear or Coulomb 

component (–A / r), equivalent to a U(1) symmetry. If we suppose that the strong, electromagnetic 

and weak interactions are determined by sources with respective vector, scalar and pseudoscalar 

properties, the ‘passive’ or Coulomb term that each interaction requires appears to be equivalent to 

the scalar values associated with these. These can be equated to the coupling constants associated 

with these interactions, and it is these that we may expect to be unified at Grand Unification. The 

‘active’ parts of the strong and weak interactions represented by the non-Coulombic potentials can 

then be seen to result from their vector and pseudoscalar properties. 

The scalar electric term can be expected to be equivalent to a pure magnitude (a Coulomb 

term). The vector strong term requires an additional linear component (–Br). The pseudoscalar 

weak term requires an additional dipolar component (–Cr–
3
). These three conditions give the only 

nilpotent solutions for the state vector, and they have the characteristics observed in the three 

interactions: 

inverse linear  U(1) scalar phase 

inverse linear + linear SU(3) confinement 

inverse linear + other polynomial SU(2) harmonic oscillator 

 

9. Acquisition of mass through the Higgs boson 

The coupling of a massless fermion, say (ikE1 + ip1), to a Higgs boson, say (ikE + ip + jm) (–ikE – 

ip + jm), to produce a massive fermion, say (ikE2 + ip2 + jm2), can be imagined as occurring at a 

vertex between the created fermion (ikE2 + ip2 + jm2) and the antistate (–ikE1 – ip1), to the 

annihlated massless fermion, with subsequent equalization of energy and momentum states. If we 

imagine a vertex involving a fermion superposing (ikE + ip + jm) and (ikE – ip + jm) with an 

antifermion superposing (–ikE + ip + jm) and (–ikE – ip + jm), then there will be a minimum of two 

spin 1 combinations and two spin 0 combinations, meaning that the vertex will be massive (with 

Higgs coupling) and carry a non-weak (i.e. electric) charge. So, a process such as 

(ikE + ip + jm) → α1 (ikE + ip + jm) + α2 (ikE – ip + jm)  

      isospin up      isospin down 
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requires an additional Higgs boson vertex (spin 0) to accommodate the right-handed part of the 

isospin down state, when the left-handed part interacts weakly. This is, of course, what we mean 

when we say that the W and Z bosons have mass. The mass balance is done through separate 

vertices involving the Higgs boson. In the case of baryons, the up states also acquire terms of the 

form –α2 (ikE – ip + jm), while the more massive generations take on extra terms equivalent to αn 

(ikE – ip + jm) because of the breaking of weak charge conjugation symmetry. 

 

10. Berry phase: a prediction 

The mathematical dipolarity of the pseudoscalar weak charge appears to be the ultimate source of 

different phases of matter and phase transitions, when the indistinguishability of sign is allowed to 

effectively eliminate the weak component in fermion-fermion combinations, and so overcome 

aspects of Pauli exclusion. It is certainly the origin of the Berry phase and related effects 

(Aharonov-Bohm, Jahn-Teller, quantum Hall, Cooper pairs, etc.). In the Berry phase the spin 0 

‘bosonic’ state  

(ikE + ip + jm) (ikE – ip + jm) 

is such as would be required in a pure weak transition from –ikE to + ikE, or its inverse. Because 

the spin 0 state is necessarily massive, time reversal symmetry (the one applicable to the transition) 

must be broken in the weak formation or decay of states involving the Berry phase. 

 

11. Conclusion 

Weak, strong and electric interactions and the acquisition of nonzero mass by fermions and bosons 

can all be related to the structure of the nilpotent state vector, and, in particular, to the relative signs 

associated with the E and p operators. 
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In the earlier works on quantum geometrodynamics in extended phase space it has been argued that a wave 

function of the Universe should satisfy a Schrödinger equation. Its form, as well as a measure in Schrödinger 

scalar product, depends on a gauge condition (a chosen reference frame). It is known that the geometry of an 

appropriate Hilbert space is determined by introducing the scalar product, so the Hilbert space structure turns 

out to be in a large degree depending on a chosen gauge condition. In the present work we analyse this issue 

from the viewpoint of the path integral approach. We consider how the gauge condition changes as a result 

of gauge transformations. In this respect, three kinds of gauge transformations can be singled out: Firstly, 

there are residual gauge transformations, which do not change the gauge condition. The second kind is the 

transformations whose parameters can be related by homotopy. Then the change of gauge condition could be 

described by smoothly changing function. In particular, in this context time dependent gauges could be dis-

cussed. We also suggest that this kind of gauge transformations leads to a smooth changing of solutions to 

the Schrödinger equation. The third kind of the transformations includes those whose parameters belong to 

different homotopy classes. They are of the most interest from the viewpoint of changing the Hilbert space 

structure. In this case the gauge condition and the very form of the Schrödinger equation would change in 

discrete steps when we pass from a space-time region with one gauge condition to another region with an-

other gauge condition. In conclusion we discuss the relation between quantum gravity and fundamental prob-

lems of ordinary quantum mechanics. 

 

1. Introduction 
One of unsolved problems of the Wheeler − DeWitt quantum geometrodynamics is that of Hilbert 

space structure. The Wheeler − DeWitt quantum geometrodynamics was the first attempt of con-

structing a quantum theory of the Universe as a whole, however, if its Hilbert space structure is not 

rigorously determined, one cannot consider it as full and consistent, as well as any quantum theory. 

The reasons, why this problem cannot be solved in the framework of the Wheeler − DeWitt 

quantum geometrodynamics, are closely connected with the fact that it was thought of as a gauge 

invariant theory. According to the original idea of Wheeler, a wave function of the Universe, which 

is a basic object in quantum geometrodynamics, must depend on 3-geometry of a manifold Μ. In 

other words, if Riem(Μ) is the space of all Riemannian metrics on Μ, and Diff(Μ) is dif-

feomorphism group, the wave function must be defined on the so-called superspace of all 3-

geometries, or factor space Riem(Μ)/Diff(Μ) [1, 2]. One possible way to express this dependence 

would be to regard the wave function as a function of an infinite set of geometrical invariants [3]. It 

is not clear, however, how to put this idea into practice. Actually, the wave function depends on a 3-

metric, and it was believed that, if the wave function  satisfied a quantum version of gravitational 

constraints, it would ensure its dependence on 3-geometry only. The very requirement for the wave 

function to satisfy the Wheeler − DeWitt, but not a Schrödinger, equation leads to the problem of 

Hilbert space, in particular, it is questionable how an inner product of state vectors should be deter-

mined (for a recent review on related problems, see [4]). On the other hand, the Wheeler − DeWitt 

quantum geometrodynamics is based on Arnowitt − Deser − Misner (ADM) formalism, and, as 

some authors have emphasized [5 − 7], the latter is equivalent to some kind of gauge fixing, so there 

is the inconsistency between appealling to ADM formalism and the requirement for a wave function 

to be invariant under diffeomorphism group transformations. 

In this work I shall discuss another approach to quantum geometrodynamics, namely, quantum 

geometrodynamics in extended phase space [8 − 10]. The main features of this approach were pre-
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sented on the previous PIRT conference [11]. As was shown in [11], in the “extended phase space” 

approach a physical part of the wave function satisfies a Schrödinger equation, whose form, as well 

as a measure in Schrödinger inner product, depends on a gauge condition, or a chosen reference 

frame (the basic formulas will be repeated in Section 2). The situation can be illustrated by the fol-

lowing scheme (Fig. 1). All metrics µνg  related by gauge transformations are unified into an equiv-

alence class representing dynamics of some 3-geometry. Two metrics µνg  and µνg ′ , which can be 

obtained from each other by a coordinate transformation, correspond to the same geometry, but may 

answer to various gauge conditions. In this case in our approach different gauge conditions corre-

spond to different physical Hamiltonians, say, 1H  and 2H .Every of the Hamiltonians acts in its 

own Hilbert space with a measure in inner product defined by a chosen gauge condition. Thus we 

come to the following question: How gauge transformations could change the structure of Hilbert 

space? To answer it, we shall consider in Section 3 three kinds of gauge transformations: residual 

gauge transformations, those whose parameters related by homotopy and those whose parameters 

belong to different homotopy classes. In Section 4 we shall point to some relation between the prob-

lems arising in quantum geometrodynamics and the problem of reduction of a wave function in or-

dinary quantum mechanics, which has been discussed up till now by eminent physicists (see, for 

example, [12 − 14]). 

 
Fig. 1. 

 

2. The Hilbert space in 'extended phase space' version of quantum geometrody-

namics 
In [11] we considered a simple minisuperspace model with the action 
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where { }aQQ =  are physical variables, θθ  ,  are the Faddeev − Popov ghosts and µ is a gauge vari-
able, its parameterization being determined by the function ( )Qv ,µ . In simple cases µ can be bound 
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We used a differential form of gauge conditions 
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The wave function is defined on extended configurational space with the coordinates 

θθµ    ,,,Q . In “extended phase space” version of quantum geometrodynamics we quantize ghost 

and gauge gravitational degrees of freedom on an equal basis with physical degrees of freedom. The 

motivation for it was that it is impossible to separate gauge, or “non-physical” degrees of freedom 

from physical ones if the system under consideration does not possess asymptotic states, and it is 

indeed the case for a closed universe as well as in a general case of nontrivial topology. Then, we 

come to the Schrödinger equation, which is derived from a path integral with the effective action 

(2.1) without asymptotic boundary conditions by the standard well-definite Feynman procedure, 

and which is a direct mathematical consequence of the path integral. 
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M is the measure in inner product, K is a number of physical degrees of freedom, V is a quantum 

correction to the potential U, that depends on the chosen parameterization and gauge [11]: The 

Schrödinger equation (2.5) gives a gauge-dependent description of the Universe. The general solu-

tion to the equation (2.5) is 

( ) ( ) ( )( )( )∫ +−−Ψ=Ψ dkikQftQtQ k θθµδθθµ      ,;,,, . (2.9) 

It can be interpreted in the spirit of Everett's "relative state" formulation: Each element of the 

superposition (2.9) describe a state in which the only gauge degree of freedom µ is definite, so that 
time scale is determined by processes in the physical subsystem through functions ( ) ( )QfQv   ,,µ , 

while the function ( )tQk  ,Ψ  describes a state of the physical subsystem for a reference frame fixed 

by the condition (2.3). It is a solution to the Schrödinger equation with a gauge-dependent physical 

Hamiltonian ( )physH : 
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Solutions to Eq. (2.10) make a basis in the Hilbert space of states of the physical subsystem: 

( ) ( ) ( )QEQH knnknphys Ψ=Ψ ; (2.12) 
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As one can see, the spectrum and eigenfunctions of the operator ( )physH  will depend on a chosen 

gauge condition. The dependence of the measure in the physical subspace on this gauge results from 

the normalization condition for the wave function (2.9): 
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(2.14) 

Therefore, the whole structure of the physical Hilbert space is formed in a large degree by the cho-

sen gauge condition (reference frame). One cannot give a consistent quantum description of the 

Universe without fixing a certain reference frame, as well as one cannot find a solution to classical 

Einstein equations without imposing some gauge conditions. The attempt to give a gauge invariant 

description of the Universe in the limits of the Wheeler − DeWitt quantum geometrodynamics was 

not successful, and the problem of Hilbert space is just the fact indicating that this theory has to be 

modified. 

On the other hand, in the “extended phase space” approach we face another problem, that for 

every gauge condition we have its own Hilbert space. Is there any relation between state vectors in 

these Hilbert spaces, or between solutions to Schrödinger equations corresponding to various refer-

ence frames? How does the structure of Hilbert space change if one varies a gauge condition? We 

shall try to discuss these issues in the next sections. 
 

3. Path integral and three kinds of gauge transformations 
Let us consider a spacetime manifold Μ, which consists of several regions ... , , , 321 RRR , in each 

of them various gauge conditions ... , , , 321 CCC  being imposed. It is naturally to think that such re-

gions exist in a universe with a non-trivial topology. Just for simplicity, one can assume that bound-

aries ... , , 21 SS  between the regions are spacelike and can be labeled by some time variables 

... , , 21 tt  (Fig. 2). 

 
Fig. 2. 
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So, at any border iS  between regions with different gauge conditions unitary evolution is bro-

ken down. The operators ( )ii tP ,−  play the role of projection operators, which project states ob-

tained by unitary evolution in a region iR  on a basis in Hilbert space in a neighbour region 1+iR . 

We now turn to different types of gauge transformations. It is conventionally believed that 

gauge conditions 

( ) ( )[ ] 0 , =xxgF νλρµ θ  (3.6) 

should be chosen to fix completely gauge transformation parameters. Meanwhile, one knows that, 

in general, these conditions fix gauge parameters up to residual transformations satisfying the equa-

tions, which are consequence of (3.6): 

( ) ( )[ ] ( ) ( ) 00 , ==⇒= x
g

g

F
xAxxgF ν

ν

λρ

λρ

µ
νµ

ν
κλρµ θ

δθ
δ

δ
δ

θθδ ; 
(3.7) 

However, we should not worry about this kind of transformations since they do not change the con-

ditions (3.6) and not affect the structure of Hilbert space. 

More interesting are the transformations whose parameters can be related by homotopy. Con-

sider two gauge conditions 

( ) ( )[ ] ( ) ( )[ ] 0 ,,0 , 2211 == xxgFxxgF νλρµνλρµ θθ , (3.8) 

fixing points on a gauge orbit in which a group element is parameterized by ( )xνθ1  and ( )xνθ 2 , cor-

respondently. Let us assume that there exists a continuous function ( )xrL  ,ν , so that 

( ) ( ) ( ) ( ) ( )xxLxxLxrL ννννν θθ 21  ,1, ,0: , == , (3.9) 

or, more generally, 

( ) ( ) ( ) ( ) ( )xxrLxxrLxrL ννννν θθ 2211  ,, ,: , == . (3.10) 

One would say that ( )xνθ1  and ( )xνθ 2  belong to the same homotopy class. Further, we could intro-

duce a set of gauge conditions 

( ) ( )[ ] ( ) ( )xrLxrxxgF rr  ,:0 ; , νννλρµ θθ == , (3.11) 

and identify r with a time variable t. Then, time-dependent conditions (3.11) could be interpreted as 

describing a smooth transition from the gauge ( ) ( )[ ] 0 , 11 =xxgF νλρµ θ to ( ) ( )[ ] 0 , 22 =xxgF νλρµ θ . Our 

ability to impose the set of conditions (3.11) depends on the structure of group and related to the 

possibility of introducing some special coordinates in group space [2]. In our simple minisuperspace 

model before gauge fixing the action is invariant under one-parametric Abelian group of transfor-

mations 

( ) ( ) θδθµθµδµθδ aa QQQwtt &

&

& −=−== ; ,; , (3.12) 

so that any time-dependent gauge condition 

( ) ,const; , =+= kktQfµ  (3.13) 

would satisfy the above assumption. 

Any canonical time-dependent gauge constrained physical variables and their momenta  

( ) 0 , , =tPQχ  (3.14) 

can be reduced by Dirac-like procedure to the form similar to (3.13). In the canonical approach, 

choosing a simple parameterization ( )
µ

µ
1

, =Qv , one would find that the canonical Hamiltonian of 

the system H is proportional to the secondary constraint T : 

( )




 +== QUPPTH a

a
2

1
µµ . 

(3.15) 

From the requirement of the conservation of (3.14) in time [17] one obtains 

{ } 0, =+
∂
∂

= T
tdt

d
χµ

χχ
; 

(3.16) 
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{ } ( )tPQfT
t

 , ,,
1 =

∂
∂

−= −χ
χ

µ , 
(3.17) 

the letter can be presented in a differential form. We would like to emphasize here that, though 

quantization schemes using canonical time-dependent gauges (3.14) are believed to be equivalent to 

gauge invariant Dirac quantization [17], from the viewpoint of our approach imposing such gauge 

conditions implies gauge-dependent structure of physical Hilbert space. 

The formalism developed in [8 − 10] can be generalized to gauge conditions explicitly depend-
ing on time. The pass integral approach includes some skeletonization procedure, which implies 

approximation of the gauge on each time interval [ ]1 , +ii tt . In the simplest situation, we could as-

sume that the change of gauge condition in each time interval is given by a function 

( ) ( )QfQf ii αδ = , (3.18) 

α is a small parameter, so that the gauge condition is a step-like function 

( ) ( ) ( ) kttQfQf
i

ii +−+= ∑ θαµ  (3.19) 

in the sense that in each interval [ ]1 , +nn tt  the gauge condition does not depend on time: 

[ ] ( ) ( ) ( ) kQfQfQftt n

n

i

inn +++= ∑
−

=
+ δαµ

1

0

1 : , . 
(3.20) 

Thus, we have come to the case of a small variation of gauge condition that was discussed in [16]. 

As was shown in [16], this small variation gives rise to additional terms in a physical Hamiltonian, 

these terms being non-Hermitian in respect to original physical subspace before variation. In our 

time-dependent case it means that at every moment of time we have a Hamiltonian, which acts, in 

its own “instantaneous” Hilbert space. The instantaneous Hamiltonian is a Hermitian operator at 

each moment, but one should think of it as a non-Hermitian operator in respect to a Hilbert space 

one had at a previous moment. The situation is different from what we have in ordinary quantum 

mechanics for a time-dependent Hamiltonian that acts at every moment in the same Hilbert space 

whose measure does not change in time. An analogy can be drawn between our situation and parti-

cle creation in nonstationary gravitational field when we also have an instantaneous Hamiltonian 

and instantaneous Fock basis [18]. 

Smooth changing of a gauge condition in time implies that solutions to the Schrödinger equa-

tion for physical part of wave function also change in a continuous and smooth manner. Another 

situation we face when gauge conditions in two regions fix gauge parameters which belong to dif-

ferent homotopy classes, and, as a rule, spacetime coordinates in these regions being related by a 

singular transformation. Then the gauge condition and the very form of the Schrödinger equation 

change in discrete steps when one passes from a space-time region with some gauge condition to a 

region with another gauge condition. This case is of the most interest from the viewpoint of chang-

ing the Hilbert space structure and the most difficult to treat. In any case, an initial state in a region 

iR , resulting from its preceding evolution, should be written as a superposition of states in a new 

Hilbert space in iR . There arise a number of questions, like: Will this superposition of states be 

stable? Could the breakdown of unitarity give rise to some kind of irreversibility? Could we define 

the change of entropy of the physical system when going to a region with different gauge condi-

tions? Possible answers depend on a chosen model and require new non-perturbation methods. 

 

4. Conclusion: the problem of wave function reduction and Quantum Gravity 
As was pointed out by von Neumann [19], in quantum mechanics one deals with two different pro-

cesses, namely, unitary evolution of a physical system in time described by the Schrödinger equa-

tion, and reduction of wave function of the physical system under observation. The whole evolution 

of the system can be presented by the formula 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )001112223

2111

 , , ,              

 , .

tttUtPttUtPttU

ttUtPttUt NNNNNN

Ψ×

×=Ψ −−−−

K

K
(4.1) 
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where ( )itP  are projection operators corresponding to observation at moments 1321  , , , , −Ntttt K  

(see, for example, [20]). There arises an analogy between the formulae (3.5) and (4.1): Indeed, we 

interpret any reference frame as a measuring instrument representing the observer in quantum geo-

metrodynamics. Gauge conditions define interaction between the measuring instrument (reference 

frame) and the physical subsystem of the Universe. Changing the interaction with the measuring 

instrument makes us go to another basis in a Hilbert space and, even more, to another Hilbert space. 

It enables us to hope to throw a new look to the central quantum mechanical problem of wave 

function reduction. Roger Penrose pointed out time and again that a solution of this problem, as 

well as understanding of irreversibility of physical processes, must be closely related with the pro-

gress in constructing quantum theory of gravity. In his books [12, 13] Penrose proposed a mecha-

nism anticipating a choice among spacetime geometries, each of them corresponding to an element 

of quantum superposition. Details of the mechanism have not been elaborated enough, and this pro-

posal was strongly criticized by Hawking [21]. However, the main idea that quantum gravity may 

help in deeper understanding of quantum mechanics seems to be fruitful. In our “extended phase 

space” approach we face the situation when the breakdown of unitary evolution of a physical sys-

tem naturally follows from the very structure of the theory − we do not need to introduce “by 
hands” some special interaction, which would result in the breakdown of unitarity. In its turn, it is 

connected to the irreversibility of measuring processes. According to the opinion of another famous 

scientist, Ilya Prigogine, symmetric in time quantum dynamics described by the Schrödinger equa-

tion should be generalized to involve irreversible processes. To do it, one has to extend the class of 

admissible quantum operators beyond Hermitian operators and include non-unitary transformations 

of state vectors or density matrices ([14]; see also his Nobel prize lecture [22]). On the other side, in 

quantum mechanics one could examine models of interaction with a measuring instrument in which 

coordinates of a physical system are bound to coordinates of the instrument by means of some con-

straints, the latter ones are, in a sense, “gauge conditions” like those we have considered in our 

model with finite number degrees of freedom. Similar models of interaction with the instrument had 

been explored yet by von Neumann [19]. In future, some general points in quantum mechanical and 

quantum gravitational models of interaction may be revealed. 

It may seem that there are more question than answers in this report. However, we have dis-

cussing physical interpretations of Relativity Theory already in a hundred years. So it is not surpris-

ingly that attempts of its unification with quantum theory pose even more fundamental and intri-

guing questions, which have been waiting for their resolution. 
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Vacuum and Dark Energy 
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A problem of vacuum energy in cosmology is reviewed. Astronomical data inidicating to a non-

zero antigravitating dark energy are discussed. Possible ways to resolve 100 orders of magnitude 

discrepancy between theory and observation are described. Adjustment mechnism is discussed in 

some detail. 
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Dark matter and search capability for its particles 
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On dark matter we understand the matter which may be detected only due to its gravitational 

interaction on environment bodies and particles. The main evidences of dark matter existence are 

the plotting of rotational curves for galaxies (fig. 1) and microlensing of the electromagnetic 

galactic radiation. An alternative to the dark matter existence is the presupposition that the 

gravitational forces are getting stronger with distance. However more than the successive 

explanation observed anomalies is based on availability of dark matter in galaxies. At the same time 

let us mention that the assessed density of Universe (about 1 hydrogen atom in 1 м
3
) is too small, 

therefore "the dark energy" for the dynamics description of Universe is still introduced [1]. 

    
Fig. 1 The rotational curves for the galaxies "Milky Way" and NGC 6503 
 

Observational data denote existence about 90% of a galaxies mass, which is being detected only by 

gravitational effects. It is common practice to discriminate three types of dark matter: 

• Baryonic dark matter 

• Cold dark matter 

• Hot dark matter. 

The last two species are nonbarionic nature. It is necessary to use the cold dark matter for the 

explanation of star beginning and/or stars restraining in galaxies. Particles of nonbarionic cold dark 

matter may be the presumable particles of elementary particle physics. For example there are 

axions, WIMPs, SIMPs, stranglets, technibaryons, ChaMPs. Therefore the registration of dark 

matter particles is actual both for astrophysics and for elementary-particle physics.  

Let us consider the parameters of cosmic WIMPs  
 

MASS                          MW 10 – 5000 GeV/c
2
  (~ 10 – 5000 mP) 

VELOSITY                 VW 10
5
 --10

6 
 m/s 

DENSITY                   Wρ  
0,3 (GeV/c

2
)/cm

3
 

CROSSECTION        Wσ  
<10

-10
 pbarn (~10

-44
 cm

2
) 

FLUX                          WΦ  
~ 5∗ 104    1/(cm2

 s) 

 

For comparison we will lead to masses of other particles 

MASSES OF OTHER PARTICLES 
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NEUTRINO                           <30eV/c
2
 

AXION                                     10 eV/c
2
 

NEUTRALINO                      >20 GeV/c
2
 

MAJORANA FERMION      >20 GeV/c
2
 

FAST NEUTRONS               >1 MeV/c
2
 

 

The nonbarionic nature of WIMPs and the absence of an electric charge permits the registration of 

these strange particles only by mass presence in case of the frontal particle collision with a nuclei of 

ordinary matter.  

                             
                       Fig.2   Model of interaction between WIMP - atom  
             

As the result of a collision the recoiled atom receives an energy. It can be registered by various 

methods: 

A) in gases, recoiled atoms produce ionization, that may be detected and measured by electronic 

devices. In some gases there may be the scintillation (the emergence of bursts of radiation) in case 

of the deceleration of an ionized atom motion; 

B) in a condensed media (some fluids and crystals) the scintillation also there may be. The radiation 

intensity depends on the energy of recoil atoms;  

С) if a recoil energy is large, then in a condensed media  the excitation of acoustic waves produced 

along the path of a registered particle is possible (the crackles and the splits in media along a track 

like a bolt); 

D) in crystals a recoil energy can be transformed in lattice oscillations (phonons). These oscillations 

are to be recorded at cryogenic temperatures by the bolometric technique; 

E) in semiconductors (for example the silicon or germanium) the electric charge freed by a recoiled 

atom can be registered as in the case A); 

F) it is possible to measure the change of an atomic magnetic moment of conventional substance, 

due to its collision with WIMP. 

Data of similar measurements may be used for: 

• particle detection; 

• determinations of their nature (masses, speeds, flux densities, spin); 

• possible correlation with models of higher-dimensional, i.e. string theory and theory of dark 

energy; 

• revealing of facts for the mutual influence of gravitation and strong interaction; 

For the purpose of conducting of such measurements within the last years by the various scientific 

groups a large number of experimental facilities was created. Their classification can be realized in 

a number of ways. Let us lead to one of them [1]: 

ANAIS  CASPAR  CDMS  CRESST  CUORE  

DAMA  Drift  Edelweiss  Genius  HDMS  

IGEX LIBRA MIMAC-He3 Majorana NAIAD 

ORPHEUS Picasso ROSEBUD UKDMC XENON  
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XMASS  WARP  Zeplin    

The results received at facilities CDMS (USA) and DAMA (Italy) are considered as the most 

significant. Let us mention that apart from experiments, in which it is possible to register WIMP 

directly, in a number of other experiments it is able to obtain oblique evidences of the existence of 

dark matter particles. In its turn, one can break the direct experiments on two classes. In the first 

class(CDMS, Edelweiss, Zeplin - 1) the total energy of nuclear recoil of a detector working medium 

is registered, and the signal is extracted from background, created by the nuclei collisions with the 

other particles. In the second (DAMA) the modulation of a count rate is registered. The modulation 

of a flow of dark matter particles can be conditioned by Earth motion around the Sun, and 

consequently the detector movement through a halo of dark matter of our galaxy. In standard 

experiments the modulation is low (< 2%). 

Other possibility of an emergence of modulation of flow is the orientation change of a detector 

concerning vector of the solar velocity relative to the centre of our galaxy.  

Underneath the results of two experimental groups are given. 

The Sierra Grande curve is plotted from a long exposure germanium experiment in which a search 

for both daily and annual modulation has been performed, and the results from the daily modulation 

search are shown. No significant signals are seen.  

         
                             Fig. 3 Background rate from 428.1 days of data binned in 10-minute intervals 
                                        and folded to look for daily modulation 
 
An example of an annual modulation search in the DAMA program is shown below. 
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      Fig.4 Results of an annual modulation search using ~ 4 years of data from the DAMA experiment 
Coherent principle of registration. Estimates of the registration probability by liquid 

Не-II using 
The experimental devices used for the registration of WIMP, as evidenced by the foregoing, must 

satisfy to contradictory requirements:  

• to posses high sensitivity to rare events;  

• to have the significant noise protection level, i.e. insensibility to low background, created by 

other particles and/or effects.  

Therefore the only narrow class of precise recorders will do for the purpose of a feebly interacting 

particles registration. The success of a laser application in precision measurements is defined in 

large degree by coherence of their radiation. The considerable share of measurable progress of low 

magnetic fields is determined by the use of coherent states in superconductors. Other manifestations 

of quantum substance properties in macroscopic scale appear in Bose-Einstein condensate [5]. Some 

manifestations have been much studied in a liquid helium. 

The liquid helium is the subject often used in experiments with elementary particles. The reactions 

have been examined and the interaction cross sections during exposure of the liquid helium by 

photons with energies to GeVs, high-speed neutrons and protons are measured. 

Let us make an estimation of the possibilities of the WIMP registration with the help of devices, 

using the liquid helium. Already since 40th of past century it was known that in the liquid He-II the 

excited states can be two types (fig. 5). 

                             
                                             Fig.5  Types of excitations in liquid He-II 
Really, this experimental curve is explained on the assumption that in a liquid He-II there are not 

only phonons but there is also the other type of excitation. Phonon excitations correspond to the 

rearrangements by large distances of Bose particles (the long-wave density fluctuations), and 

rearrangements at short distances d (d is about the interatomic distance) correspond to the other 

elementary excitations - the rotons. 

 In case when a particle hits in the liquid helium it is possible to excite phonons and rotons. Let us 

consider the registration possibility of WIMPs with the help of phonon excitation in a liquid He-II. 

It is well known that for production of elementary excitation in a liquid He-II (for example of 

phonon) it is necessary that [2] 

εph < vw ⋅pph .              (1) 

From given work [3]  

εph ~  1,3⋅10
 - 30

 J , 

pph >  6,6⋅10
- 30 

s

m kg
. 

If to accept the speed of WIMP is  

vw ~ 10
5  

,
s

m
 

then the condition (1) is being done.  
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The estimations of a phonon energy show that the very small energy for their excitation is needed. 

Indeed 

εph 

λ

hc≈  ,               (2) 

where с  is a sound velocity in the liquid He-II ( smс /2,0≈ ),λ  is a wavelength. Assuming the 

length λ  ≈0,1 mm, will receive 

εph min  eV10 11−≈  .  

This value agrees well with experimental data. So there are reasons to believe that in case of a 

WIMP entry into the device with a superfluid He-II the excitation is born.  

Estimating the probability magnitude of a particle detection by the coherent state in the liquid 

helium, let us use the following argument. Assume that a healing length ξ  determines the atom 

location in the liquid helium, then the total transversal interaction cross section of WIMP-coherent 

atomic state becomes equal to N
*

Wа−σ  (where N* is a number of atoms in a coherent state, Wа−σ  is 

a cross section of atom-WIMP interaction), instead of Wа−σ , as in the case of an interaction with 

atoms in normal fluid. If  d ~ 4,1 
o

A  and ~ξ 60 nm the increase of the detector cross-section is 

equal µ = )
d

(
ξ  

= (
1,4

6
) (

10

8

10

10
−

−

) ≈150. In other words, a registration probability of the particle 

incoming in a device by coherent states of the liquid helium about hundred times higher than by 

individual atoms of a normal fluid. 

  

Principle of WIMP registration by devices with a weak link 
Let us suppose now, that the liquid He - II occupies two volumes, joined by a weak 

 link (for example by a pipe with a small cross-section) (ref. to fig. 6). 

   

                                   
              Fig. 6 Volumes with Bose-condensate joined by the weak link 
 

If the various pressures act in volumes, then the superfluid component of the liquid helium will be 

bypass from one volume into the other (the thermomechanical effect). 

The creation of an additional difference of chemical potentials ∆µ between two reservoirs will lead 

to emergence of flow pulsations with Josephson frequency fj = 
h

µ∆
. Indeed, let the wave function 

kψ  describing the state of an He atom, is presented by dependence 

),(ie ),A(),( tr

k trtr
→→→

= φψ             (3) 

and satisfies to time-dependent Schroedinger equation 

 Small volume 

T+ ∆ T, p+ ∆p 

∆ p 
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i
t

k

∂
∂ψ

h  = kψ
∧

H .             (4) 

By use of equation (3), we rewrite (4) in form  

-i
t

k

∂
∂φ

h  = 
kε ,               (5) 

where 
kε  is an energy of 'k' state. Because in the liquid He-II the coherent and the incoherent states 

exist, then we can carry out the averaging in phases of states. It is evident that after the averaging 

the incoherent states give the zero contribution to a phase variation, and the coherent states posses 

the uniform energy, i.e. a wave-function phase. So it is possible let to go the index 'k' in case of 

description for the liquid He-II superfluid component. If the volume with the liquid He-II is divided 

into some parts, then in every part will arise its proper coherent state (we shall characterize its by 

the new index 'i' and for simplicity will put  i = 1, 2). Under change of an internal energy in one of 

parts of volume and availability of a weak relationship between parts the interference of states 

arises, resulting in pulsations of any hydrodynamic magnitudes: pressure P, temperature T, flow 

rate vS, etc. The phase difference of coherent states obeys to equation 

dt

) - d( 21 φφ
 = 

dt

)d(δ
  =  

h

ε∆
           (6) 

where ε∆ is a difference of internal energies in various parts of a volume. 

Let WIMP fall into a device (a detector), containing two volumes of liquid He-II, joined by the 

week link (the pipe with a diameter in some nanometers). The new particle exciting the phonon 

alters its chemical potential  

VS ,N

U








∂
∂

=µ ,              (7) 

where U is the internal energy, N is the particles number, S is the entropy, V is the substance 

volume. The change of a chemical potential µ will transfer the liquid He-II (as it will be shown 

below) in one of halves in an excited state. Therefore we rewrite now equation (6) in form  

h
2

dt

d µ
π

δ ∆
=  .              (8) 

In accordance with equation (8) the oscillations with an linearly varying phase have to arise in the 

medium. The flow magnitude through the weak link has to range under the law 

δ sin 0Φ=Φ ,              (9) 

where δ = 2π  fj t  и  fj = 
h

µ∆
 is Josephson oscillation frequency. The device, in which was 

demonstrated the oscillations effect of sound oscillations when establishing the difference of 

chemical potentials ∆ µ in the liquid He-II is described in paper [3]. 

Thus, it is possible to register still weaker (for approximately four order) excitation energies, 

because the difference of chemical potentials ∆µ ~ 10
-15 

eV corresponds to registered Josephson 

frequency. 

In device [3] the chemical potential difference ∆ µ has been produced by the application of an 

electric field. Another possibility is the creation of ∆ µ by the particles injection into one of device 

cavities. The calculation of the ∆ µ value is made on the basis of Gross - Pitaevskii equation. 

 

Quantity determination of the chemical potential variation in Bose-condensate  
It should be borne in mind that already from the most general considerations [4] a collision 

probability in Bose systems grows in comparison with classic, and because of Heisenberg ratio even 

the weak potential may result in significant momentum transfer, whereby in case of an extended 

structure - on the creating of an angular momentum. 
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 Imagining superfluid component of the liquid helium as Bose-Einstein condensate, the full number 

of particles N and the condensate energy E is expressible in terms of its temperature T and the 

chemical potential µ 

N =∑
∞=

=

i

i

iN
0

= ∑
∞=

=
− −

i

i
kTie0

/)(
1

1
µε   ,          (10) 

E = ∑
∞=

=

i

i

ii N
0

ε =  ∑
∞=

=
− −

i

i
kT

i

ie0
/)(

1
µε

ε
 ,          (11) 

here εi is the energy of a state, Ni is the particles number in this state, T is the condensate 

temperature. At that εi > µ, otherwise the negative values Ni  are occurred .  

On the other hand, considering the closed quantum system with a fixed temperature T, it is possible 

to believe that equations (10) and (11) determine the chemical potential µ 

T)f(N,=µ .              (12) 

So the addition of particles to a system, which was in the stationary equilibrium state with a fixed 

temperature, will cause to increase the chemical potential.  

It is interesting to note that the Bose particles condensation in the ground system state is not a direct 

consequence of the provision of a particle interaction, as this shall be allowed by the classic 

thermodynamics or classical statistics, and it is exclusively conditioned by the quantum statistics 

(the induced radiation draws Bose particles into a ground state, in which already are so much 

particles). 

After condensation the absorbtion of new particles in Bose condensate will cause the change of µ. 

The appearing of an additional ∆µ, causing the occupation of excited states, may manifest the Bose 

particles excitation (in particular, the phonon excitation), the energy quantity of which is well under 

a recoil atom energy in a nonquantized liquid, but it is sufficient for an experimental registration 

[3].   

Mention also that the knockout of particles from Bose-Einstein condensate or the excitation of an 

atom chain, being in a coherent state, also could lead to a phonons production. 

In principle, the ∆µ determination can be derived from modified Gross-Pitaevskii equation. As it is 

known [5], the equation itself describes the physics of weakly interacting systems at low 

temperatures. In time-dependent Schroedinger equation  

i =
∂
∂
⋅

t

ψ
h

∧

Н ),( tr
→

ψ ,            (13) 

Hamiltonian operator has the specific kind 
∧

Н = +∇− 2
2

2m

h
 Uext +

→

)( r  g

2

),( tr
→

ψ ,        (14) 

here 
2∇  is Laplacian, Uext is the external field potential, and g is the constant, corresponding to the 

interaction between particles. In the stationary case it may be assumed   

ψ(  t,r
r

):=φ( r
r

)exp(-iµt/ћ), 

resulting in the solution of equation for µ 

(- +∇2
2

2m

h
Uext +

→

)( r  g| )(
→

rφ |
2
) )(

→

rφ = µ )(
→

rφ  .      (15) 

At that      
m

a4
  g

2
hπ

= ,              (16) 

here a  is the scattering length of so-called S-wave. In case of low temperatures =
→

)r(2φ  n(
→

r ), 

where n(
→

r ) is number density of particles. One of consequences of equation is the determination of  

the healing length ξ in Bose-Einstein condensate 
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an8

1

⋅⋅
=

π
ξ .              (17) 

The use of formula (16) and (17) allows to define the sound velocity in Bose-Einstein condensate. 

The description of collective excitations with a low energy is accomplished by Gross-Pitaevskii 

equation if Bogoliubov approximation accounted for [6]. The Bogoliubov dispersion law for sonic 

waves serves as one of equation solutions  

)2
2

(
2

2222

gn
m

q

m

q
+=

hh
hω ,           (18) 

here q
r

 is the propagation vector of an excitation. One can obtain the linear dispersion law from law 

(18) within the limit of small excitation pulses 

cq =ω ,                (19) 

where с  is a sound velocity in Bose-Einstein condensate 

ξ
1

m2m

gn
  c

h
== .             (20) 

When Т≈2,176 К, the healing length ≈ξ 60 нм, the sound velocity с≈0,2 м/с, that on order of 

magnitude coincides with the experimental data [3]. 

  In case of WIMPs hit into Bose-Einstein condensate the system becomes by the open quantum 

system, and its evolution and a variation of ∆µ are derived from a solution of stochastic 

Schroedinger equation. In the proposed model of WIMP - Bose-particle interaction the stochastic 

Schroedinger equation is written as  

d
h

i
−=ψ

∧

Н ⋅ψ dt - ⋅⋅− ψµµ
λ 2)(
4

dt + ⋅− ψµµλ )( dq(t).   (21) 

The last component on the right side of equation describes Wiener random process. At that λ is the 

constant of a WIMP – Bose-particle interaction. 

 

Estimates of the registration probability by a classic liquid 
On the basis of classical concepts, will lead to an evaluation of a detector efficiency, using the 

liquid argon. This estimate it is possible then to compare with an 

evaluation of efficiency of the detector  thick with the liquid 

superfluid He-II. Believing that in case of the hit of WIMP in a 

detector results in the collision of WIMP with a particle of a 

working medium, the energy of which will be further specified, 

let us define the effective cross section of a detector  by following 

ratio. Let 

Eabs = dv)v(mv)v(
v D

⋅⋅⋅Φ∫ σ ,        (22) 

is the energy absorbed in a detector medium in a unit time,  )v(Φ  

is the particle flux, falling on a unit square of a detector working medium, mv  is the particle 

(WIMP) momentum. Because the WIMP velocity distribution is unknown, and the transversal cross 

section of a WIMP-atom reaction has the large range of uncertainty, then we restrict ourselves by 

quantity estimations of (22)  

Eabs = ⋅⋅⋅Φ τ
W

T
W Dσ  = 

Dστβ ⋅⋅⋅⋅Φ 2
W

E
W

 ,     (23) 

here τ is a measurement duration. Assume that Eabs = 40 keV, 
WΦ = 4·10

5 1/sm
2
 s, 

   
EW = 10

11 
eV, β = 10

-3
, then in case of a registration time τ = 1 day the evaluation of a needed 

detector cross-section is equal to  

Dσ  211

56115

4

1016.1
1086.01010104

104
sm−

− ⋅=
⋅⋅⋅⋅⋅

⋅
= . 

On the other hand, take 
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Dσ = 
µ
σρ VN WaA ⋅⋅⋅ − ,            (24) 

where µ is an atomic mass,  NA is Avogadro constant, σа-W is a transversal cross-section atom–

WIMP reaction, ρ is a working medium density, we will have the necessary volume of a detector 

medium is determined from 

V = 
WaA

Д

N −⋅⋅ σµρ

σ

/
.            (25) 

If the operating fluid is argon with ρ = 1,42 g/sm
3
, µ = 40 g/mol, σа-W = 10

-44
 см

2
= 10

-8
 pbarn,  

V = 
4423

11

101002.640/42.1

1016.1
−

−

⋅⋅⋅
⋅

 = 0.54 34311 104.510 msm ⋅=⋅ ,  (26) 

that coincides with the evaluation of a count rate 10
-4  

-- 10 event /kg/day. 

So, the particle detection with the help of He-II as Bose-Einstein condensate has at least two 

priorities: 

1. The availability of the registration threshold (light neutral particles can not excite the phonon). 

2.  Drastically improvement of the registration probability (the significantly greater interaction cross 

section) due to coherence of Bose-Einstein condensate.  

In comparison with cryogenic solid-state sensors (the phonons registrations) the WIMP registration 

with the help of coherent states in Bose-Einstein condensate has the advantages: 

• The greater interaction cross section (at least in N=
Heµ

µξ Ge

a
⋅  times), since in a coherent state 

atoms are bounded, and in a crystal lattice the atoms oscillate independently. 

• Lower threshold of a sensitivity on energy (the phonon frequency in helium ν He~ 10
1  

- 10
3  

Hz, 

whereas in Ge ν Ge~ 10
5
 – 10

8
 Hz). 

• The reaction cross section of WIMP-He is easier theoretically to calculate, than for WIMP-

heavy atom (Ar, Si, Ge). 

• Not too low temperatures are needed for a registration (for He-II ~2.7 K, and for Ge ~ 0.01 K). 

Concerning the problems of a WIMP registration, we would like to make a remark about conditions 

of its registration. It remains open the question of an advantage of an experiment in an underground 

laboratory in relation to a space or a stratospheric experiment in connection with difficulties of 

finding of a particle flux direction. It is necessary for a reliable registration the networking of 

underground laboratories with its geodesic reference, development of data exchange protocols, 

synchronous connection with radio telescopes networks and a gravitational antenna network. On the 

other hand, perhaps the experiments on a particle collision on accelerators (for example in Fermilab 

and of course, on putting in LHC (CERN)) can play the constitutive role in a registration of weakly 

interacting massive particles, because the WIMP flux is hardly fixed in space, and the particle flux 

density may artificially alter. 
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The role of the formalism used to describe the observed phenomena is discussed. It is shown that the 

mathematical apparatus generated by the consciousness takes part in the creation of the world picture. The 

choice of the base of this formalism is arbitrary. The example is given that shows the appearance of the 

“indefinites relation”, that has the same quantitative form with the traditional one but does not refer to any 

physical reasons. The possibility to construct a theory based on the postulate of the stochastic Universe and 

to provide the possibility to observe the given properties is discussed and the corresponding algorithm is 

given. The discussed approach is shown to have close connection with the anthropic principle. 
 

1. Introduction 
The aspiration for obtaining not only qualitative, but quantitative description of the world 

applicable for the forecast of the phenomena and their calculation demands the use of mathematics 

which is the universal and non-contradictive language. On the one hand, the mathematics is 

generated not by Nature, but by human consciousness, on the other hand, when describing a 

phenomenon we limit ourselves with some sides of it and regard only a model of it. That is why the 

appearing structures known as laws of Nature possess two particular features.  

1. Due to the limitations when modeling the laws of Nature are true only for some region of 

parameters characteristic for a model. (E.g., the ideal gas).  

2. The artificial structures brought into the model by the consciousness can a) assist and b) prevent 

such understanding of the world machinery that essentially affects the human life and world 

view. (E.g., the tunnel transition predicted by the quantum mechanics).  

 Much depends on the foundations of the mathematical structures used to describe the laws of 

Nature. If we chose the complex numbers algebra as such a foundation and demanding the 

mathematical condition of analyticity of the functions defined over it, we get the Cauchie-Riemann 

conditions – the basis for the physics of hydro dynamical processes. If we chose the biquaternions 

algebra, then the mathematical condition of analyticity of the functions defined over it will be the 

equations that correspond to the free electromagnetic field in physics. Therefore, the mathematical 

conditions are on the one hand formal, but on the other have deep physical meaning, and one can’t 

but think about the reasons of these links of the formalism with our notions of physical laws.

 Some other possibilities should also be mentioned. In the recent paper by L.Kauffman 

(Kauffman 2004) there is an arbitrary Lie algebra supplemented by the elements that appear to 

suffice the demand of the fulfillment of Leibnitz rule for the derivative of the product and Jacoby 

identity. The formal corollaries of the introduced mathematical operations (“discrete derivative”) 

result in the equations that have the same forms as the diffusion equation, Schroedinger equation, 

Hamilton equations, gauge theories equations with their metric tensors and connections. No 

physical assumption is made, no physical sense is discussed. But if we attribute the sense of, say, 

time and coordinates to the elements of the algebra, we immediately get the well-known equations 

of the theoretical physics.  

 This makes one think that having chosen the right formalism, one can not only get some known 

equations of physical theories “for free”, but also get some other equations. These other equations 

could either describe the patterns that had not been noticed by the researchers, or lead to the 

paradoxes in the results that seem still desirable. (The above mentioned situation with the prediction 

of the tunnel transition was realized in experiment and then – very effectively – in technology). As a 

matter of fact, both leading modern concepts – quantum mechanics and relativistic physics – 

demonstrate this deductive approach. Their formalisms play such great roles that their 
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“philosophical backgrounds” are disputed even nowadays. From the point of view of the 

understandable to all classical physics, these backgrounds are exotic.  

 That is why the known two-gaps interference experiment is treated in so many ways: regular 

quantum mechanics and its particle-wave dualism; Feynman-Hibbs approach and path integrals; 

Bohm’s “quantum potential”; not very popular in physical community but still existing theories of 

plural Universes starting from Everett’s paper (Everett 1957). Thanks to the instrumentalist 

tendencies in science and to the tremendous lot of results achieved by quantum mechanics these 

disputes are not so evident. This can not be said about the relativity theory which is the established 

theory with not so evident results. 

 A question arises: is it possible to make such a choice of the formalism while designing a 

theory that, on the one hand, it will describe at least part of the known effects, and on the other 

hand, allow the existence of the effect that is considered desirable? Surely, this “volunteering” 

approach is very vulnerable for criticism and full of risk. Successful “trials” in experimental physics 

remained in history; no one remembers unsuccessful “trials”. The experimental check of the 

presumably challenging results would have been difficult due to the natural inertia of thinking. 

Nevertheless, it should be noted that the theoretician can not suggest the experimental check of 

what is contradicting the theory he uses or constructs. That is why the theoretician supporting the 

theory common today won’t suggest the perpetual mobile project not because the impossibility of 

this machine is the law of Nature or because its existence is rejected by the French Academy, but 

because the existence of this machine contradicts the logically closed formalism of the modern 

theory. 

 J.Wheeler (Wheeler 1982) justly pointed at the role of questions that we pose in the process of 

cognition. Actually, the situation in science characteristic for this or that period of time is defined 

by the sequence of questions we try to answer. In this sense the question of the formalism choice 

should be analyzed though public excitement should be avoided. 

 

2. On the subjective uncertainty in non-perturbing measurements 
Since there is no universal and independent language of experiment and any experiment is treated in 

frames of some theory, we conclude that the role of the theory is decisive. The footing of the theory 

is the logical structure, and everything that can not be determined strictly is presented by the 

statistical averages that can be also processed with the help of logics. The known problem of the 

scattering of the particle on the two gaps led to the objectification of the probability theory notions 

and to the introduction of the principle of complementarities. The participation of the 

experimenter’s consciousness in the creation of the physical reality was discussed, but the 

discussion was not finished. As far as I can judge an important aspect of the measurement 

procedure was never touched.  

 The Heisenberg’s uncertainty principle 

h=∆∆ PX               (1) 

is usually treated as a manifestation of the particle-wave dualism – physical phenomenon 

characterizing the micro world. The simplest way to obtain eq. (1) uses such notions as the de 

Brogle wave of the micro particle and the diffraction of waves on the gap. It is always underlined 

that it is impossible to measure the parameters of micro particle in such a way that its further 

behavior is not disturbed. 

 Let us describe the experiment in such a way that the physical complementarities principle is 

not involved. This approach is based on the ideas of (Kauffman 2004). 

 Take a particle moving along the axis of the reference system. The goal is to define the product 

of its coordinate by the velocity in the given point. Let us use the “non-perturbing” method of 

measurements. We have to perform four measurements with the help of a clock and a ruler: 

coordinates and times in the initial and final points. The coordinates difference divided by the time 

interval gives the value of velocity. The smaller is the time interval the more precise is the velocity 

value.  
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 The question is: which of the two coordinates should be taken as the coordinate of the position 

of the particle? This question is connected with the question of the sequence of the measurements 

used. If we take an intermediate point as the particle location, then the instrumental error causes the 

irreducible error. But the question has the principal aspect too.  

 Write down the results for the product of coordinate by the velocity for both sequences of 

measurements with regard to the instrumental errors, tx ∆∆ , : 
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 Here X and X’ are the coordinates for the initial and final positions, T and T’ are the 

corresponding times. (Here the coordinates are not the operators). We see that the results differ. 

This is principal because there is no reason to prefer one order of measurements to the other. Here 

appears the uncertainty caused solely by the observer’s will but not by the properties of the physical 

world. Let us evaluate this uncertainty.   

 Find the difference 
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=− .      (3) 

The increase of accuracy in the measurements of the coordinate corresponds to the decrease of the 

instrumental error, ∆х, while the increase of accuracy in the measurements of the velocity 

corresponds to the decrease of both (Х’-Х) and (Т’-Т). There is a limit of the accuracy of 

measurements equal to the instrumental accuracy. In this case let us take tTTxXX ∆=−∆=− ';' . 

Then the last expression gives 
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 Thus, the product calculation uncertainty due to the arbitrary choice of the order of 

measurements is characterized by the expression well-known from the probability theory. If the 

ratio in the r.h.s. of eq. (4) is constant, then it describes the square of the displacement of the 

particle performing one-dimensional random walk with step ∆х every ∆t seconds. 

To measure length and time (and mass) let us choose the so called Planck units combined out of 

physical constants. 
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If the accuracies of the instruments correspond to these values, i.e. ∆х = L, ∆t = T, then  
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 It follows that measuring the product of the coordinate of the particle with the mass equal to 

one Planck’s unit of mass by its momentum, and using the instruments that do not perturb the 

motion of the particle and have the accuracies of one Planck’s unit of length for measuring length 

and one Planck’s unit of time for measuring time, we get the expression for the uncertainty due to 

the observer’s will   

h~)(
~

' XPXPPX ∆=−             (8) 
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When we use the mentioned system of objects and units, this uncertainty corresponds to that 

defined by eq. (1). 

Obviously, the particle with mass equal to one Planck’s unit of mass can not be considered a 

micro particle. And the accuracies of length and time measurements are far beyond any known 

achievements. Nevertheless, the result seems interesting since it illustrates the probabilistic 

character of measurements (not only in quantum mechanics) from the unusual side. The role of the 

observer which was so intensively discussed by the founders of the quantum mechanics is presented 

explicitly.  

The appearance of  h  in the r.h.s. of eq. (8) looks very spectacular, but it has no connection 

with eq. (1). If we take more reasonable values for the accuracies of length and time measurements, 

e.g., ∆х = 10
-10

m , ∆t = 10
-15

s, and take a proton with mass m = 10
-29

kg, then we get again 

h~10
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Contrary to (1) this uncertainty has a purely subjective character. Even if we manage to overcome 

this problem in the numerical calculations in the quantum mechanical problems, it stays in 

principle. 

 The preliminary conclusion is: the known formalism is not defined sufficiently well. 

Particularly, the procedure of indirect measurement is not strictly defined and this can affect the 

interpretation of the results. In the regular quantum mechanics, when we pass to operators the 

commutators appear and we can follow their link to the Poisson brackets, the latter being such 

objects of the theory that have the physical sense. But on the other hand, the same commutators can 

be linked with the measurement procedure. This can affect the algorithms of the corresponding 

numerical calculations. It is unclear how to overcome this problem since no reason for this or that 

choice of the order of measurements can be given. 

   

The function of the observer’s consciousness 
Let us regard a cloud of points on the experimental plot, for example, the dependence of the 

coordinate of a particle on time. If there is no additional information about the nature and character 

of the process, then the only thing to do is to find the approximating function that fits the 

experimental data best. Analyzing this function, one can get some information on the situation 

observed. But to do this one would inevitably use some concept that has definitions and axioms as 

background. For example, if we decide that the cloud of points is distributed around a straight line, 

then we conclude that the particle moves in a uniform straight way, hence, the sum of the forces 

acting on it is equal to zero. This conclusion corresponds to the definition of force as a value 

proportional to acceleration, and to the axiom of the inertial frames’ existence (1-st law of 

dynamics). All the points that are not on this line are treated as resulting from errors or as small 

corrections due to the phenomena not taken into consideration (dissipation). If the allocation of 

these points is far enough from the straight line and the density of the cloud is large, then other 

approximating functions can be used their choice being performed by the experimenter. For 

example, the choice of a parabolic function presumes the existence of the force field the source of 

which must be found. Thus, we see that the density and the allocation play an important role. If they 

are large, the observer’s consciousness starts to play an important role in the interpretation of data. 

If they are little, there is a risk not to find an important feature of the process. In this case the 

criterion for the optimal density and the allowable allocation of points is produced by the observer’s 

consciousness which operates with some chosen concept.  

 Let us regard the situation (Siparov 1997) when we observe the particle performing the (one 

dimensional) random walk with the step equal to δx every δt seconds. Let us follow the change of 

location of this particle by the periodically switching on the measuring device for ∆t seconds every 

А∆t seconds (А > 1) (“stroboscope”). With this the random character of the (original) motion would 

not be presented explicitly. Let us introduce the following scales hierarchy. The time of a single 

step δt is less than the time of the observation ∆t which is less than the time t of the process as a 

whole. That is 
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ttt <<∆<δ              (10) 

Let us regard only the following particular case. Let δt depend on time but rather weakly, that is 

eq. (10) remains true during all the experiment. Actually, it means that the motion resembles Levi 

flights. If the parameter α characterizing Levi flights (Shlesinger et al 1995) is larger than two, α > 

2, then the average square displacement 2/12 >< x obtained in experiment will fit the approximate 

plot corresponding to the regular random walk with constant δx and δt 
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where b is the dimensionless constant.  

 Let us consider the last equation as the solution of a dynamical equation in which 
2/12 >< x plays the role of displacement. Let us take X(t ) and T(t ) instead of δx and δt in eq. (11) 
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This expression (12) presumes the use oh the ergodic hypothesis according to which the average of 

realizations (l.h.s) coincides with the average at  t � ∞  (r.h.s). Now we find the cloud of 

experimental points with the help of the “stroboscope” and try to approximate it by a straight line. 

Let us find such values of steps X(t) that could provide the needed points. The following condition 

must be sufficed 
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where v = const. In this case observing the motion of the particle “with the help of the 

stroboscope”, we can regard the possibility of the straight homogeneous motion. Introduce the 

function 
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If the set of points visited by the particle is dense enough (δt is small enough), then during one flash 

of the “stroboscope” lasting for ∆t seconds (∆t >>  δt), there would be the points for which the step 

length X(t) suffices eq. (14). This makes it possible to observe the uniform straight motion, while 

the scattering of the other points on the plot (originating in our case from the random character of 

the process) could be interpreted as the experimental error.  

 In the same way the conditions corresponding to other types of motion (accelerated, etc.) could 

be found. The choice of the linear approximating function and the Cs = 0 condition in the form of 

eq. (14) corresponds to the fact that they suffice the postulate of the inertial frames existence. 

Nevertheless, it is clear that one can observe the other motions in the same set of points if he uses 

other approximating functions. Since in real experiment we don’t know how the particle does really 

move and we can judge upon this only interpreting the results of observations, the suggestion we 

have made can not be rejected at once however strange it could seem.  

 The results of the experimental data processing (e.g., least square method) depend both on the 

characteristics of the process and on the process organization (δt and ∆t ratio, А value). In case of 

the micro particles observations the main role is played by the choice of the approximating 

function. The corresponding historical example is the interpretation of the results of the heated body 

radiation measurements given by Wien, Rayleigh and Jeans and Planck.  

 Thus, Cs function (C - – Consciousness, s – stochastic) is the function of the observer’s 

consciousness. The need for the introduction of a function connected with the observer’s 

consciousness was discussed in (Catania 1990, Stapp 1994, Capra 1994). Notice also that the need 

for the unified approach to the description of micro and macro phenomena is realized long ago 

(Feynman and Hibbs 1968, Siparov 1994), but this problem is not solved up to now. To exclude the 

effect of the T(t) choice on the investigation of the macroscopic objects of classical mechanics one 
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should only demand that for large t the T(t) value is essentially smaller than t, and this is usually so 

for any measurements.  

 The above said provides the possibility, for example, to postulate that the Universe possesses 

the stochastic properties – in the same sense that we have in mind while postulating that the space-

time is uniform. The principal law of such “twinkling” Universe is that very variability that 

J.Wheeler mentioned in (Wheeler 1982). The approach philosophically close to this was developed 

by A.Sakharov (Sakharov 1984). 

 The recognition of the arbitrariness in the choice of the foundation of a theory means that while 

constructing the mechanics based on the Hamilton-Lagrange formalism that uses the least action 

principle one should act in a different manner than usually. One should pass from the variation 

problem with fixed ends to the variation problem with free ends, while the role of the transversality 

condition will be played by the condition Cs = 0. From the formal point of view it means the 

following. The traditional approach presumes that there exists the determinate Universe and we are 

able to observe it and describe it by fixing certain coordinates and times, fitting the approximating 

function and proclaiming it a law. Considering the Universe to be “twinkling” we realize that 

indicating a (arbitrary) law we are principally able to observe its performance in the world around if 

we choose the appropriate conditions of observations.  

 One should not think that this is easy. Since the main tendency of science is the coordination of 

its concepts in various fields, the reduction of the results to the form acceptable by the scientific 

community and the interpretation of these results would demand significant efforts both in 

experiment and philosophical world view. These efforts might well appear to be incommensurable 

with the supposed advantages of the new approach, and such situation took place a lots of times. 

That is why the “arbitrary” law that can in principle be observed must be chosen with regard to the 

far off consequences. The experimental check up could be performed only in case when the 

importance of these consequences is sufficient. 

 The base of the new formalism providing the possibility to describe the observable Universe 

with the postulated stochastic properties is the following system of (Lagrange) equations 

( ) ( ) ( ) ( ) ( )L v
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 If there are no fields produced by their sources and the particle moves freely (in the twinkling 

Universe) and we want it in this case to move in a uniform straight way, then we should take Cs 

according to eq. (14) and solve system (15) to find the Lagrange function L0 for the free particle. 

Taking into account the possible fields and complicating the system of equations one could find the 

equations of motion with regard to forces. In frames of this approach one can speak of the uniform 

and isotropic space-time only with regard to a certain averaging over some region.  

 One could also regard a reference frame in which the free particle moves according to eq. (11), 

i.e. it has an acceleration decreasing with time as t
−3

2 . This system will become inertial at large t (in 

appropriate units). This is analogous to the situation in the general relativity in which the space-time 

region far from material masses has the vanishingly small curvature.  

 When constructing the electrodynamics in the stochastic twinkling space-time one can use the 

corresponding results for the discrete space, e.g. (Plohotnikov 1988).  

 In quantum mechanics the transportation of the stochastic properties from a micro object to the 

space-time as a whole (Catania 1990) provides the possibility to describe the interaction of a 

quantum particle with a macroscopic instrument in a unified way. Besides, the finite character of 

the first interval T1 is in accord with the ideas and results given in (Kobe & Aquilera-Navarro 1994) 

where the uncertainty relation for energy and time was discussed.  

 If the particle moves according to eq. (12), then it also has the limiting value of observable 

velocity. Really, in this case the x(t) dependence is the distribution of points in the vicinity of the 

parabola branch. Calculating the dispersions D(Т) and D(Т’) with regard to Т’ – Т  >> ∆t, we get 

the limiting velocity v = (1/2)dD(Т)/dT. This means that though the “superlimiting” velocity is 
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possible, one can observe it only if the time of a single observation ∆t is less than δt. This is due to 

the choice of 
x 2

1
2

as a displacement.  

 Therefore, we see that the two independent postulates of the existing theory – inertial frames 

existence and limiting value of velocity existence – can be replace by one: the Universe possesses 

the stochastic properties. Those two postulates are corollary of this one. In the traditional theory the 

result of the observation is the state of the concrete (quantum) object. In this theory the observer 

takes part in the creation of the observable world as a whole. The physical laws equations are only 

some structures superimposed on the world and originating from the observer’s consciousness. Out 

of all the set of random points-events we observe only those that suffice best to the chosen 

structure. This means that the consciousness that has a) formed the arbitrary world picture, b) has 

provided it with some properties and c) has constructed the non-contradictive structure for its 

description will perform its observation observing its own self. The results of such observation 

presented to another consciousness would help to form the same picture with the same properties in 

that consciousness, and this would finally lead to the objectification of the world. The huge amount 

of information collected by various observers conceals the stochastic character of the initial picture, 

everyone sees (and observes in experiments of any kind) the picture the convention of which has 

been composed during the history. One can easily see that the anthropic principle naturally follows 

from this approach. 
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1.Introduction. 
Modern field theory is constructed on the base of continuous model of physical vacuum. 

However, if physical vacuum is some media, we should propose, that such media should have 

distinct microscopic structure. We know that limit equilibrium state of every media at low 

temperature is crystalline lattice state. So, from this point of view, we can propose, that physical 

vacuum resembles the space-ordered structure such as crystalline lattice. 

In this paper we would like to discuss some properties of physical vacuum as crystalline 

lattice.  

 

2. Structure and dynamics of physical vacuum as crystalline lattice. 
We propose that physical vacuum is constructed as a result of very small particles (praparticles) 

packing as a result of attraction according to Newton gravitational law at large distance and 

repulsive law at small distance. The vacuum lattice constant “a” and mass value “M” of 

praparticles can be estimated from dimension considerations, using fundamental constants: 

velocity of light (c=3x10
8
m/s), gravitational constant (G=6.67x10

=11
m

3
/kgs

2
) and Max Plank 

constant (ћ=1.05x10
-34

Js). As a result of such estimation [1] we have the order of mentioned 

value: vacuum lattice constant (so-called Plank length) a~10
-35 

m (closed to the dimension of 

praparticles) and mass of praparticles M~10
-8

kg.
  

If we take into account attraction between praparticles only, we have gravitational crystalline 

lattice, which is unstable and should be compressed into point state. Maybe state of strongly 

compressed vacuum really have existed in past, but now we have large enough extent of physical 

vacuum. According to proposition of compression and next expansion of physical vacuum, the 

crystalline lattice of physical vacuum should be inhomogeneous and does not coincide with 

known crystalline structures. However, at the first step we shall consider physical vacuum 

crystalline structure as homogeneous, at last at small enough scale. For example we shall 

consider structure of physical vacuum as face centered cubic lattice with lattice constant a=10
-35 

m, packed from particles with mass equal to M=10
-8

kg. 

 

 

 
Fig.1. Structure of globular photonic crystal with lattice constant d»a . 
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Recently new type of solid state objects has been synthesized – so-called globular photonic 

crystals. In these crystals crystalline structure are forming  as a result of packing of globules, size 

d of which is essential larger, than known in nature crystalline lattice constant a~10
-10
m, i.e. d»a 

(see Fig.1). 

There are the resembling structures in nature, known as natural opals. Artificial opals consist 

from amorphous silica globules. Size of such globules is equal to 200-400 nm.  Amorphous silica 

globules form cubic face centered lattice. Corresponding lattice constant d is comparable to 

wavelength of visible or ultraviolet electromagnetic waves. 

The simplest example of crystalline chains, used in lattice dynamics, is so-called 

monoparticle chain with additional bonds [1]. 

For such type chain (see Fig.2) we have following law of motion, taking into account only 

nearest neighbor: 

[ ],)1()1()(2)()( 0 +−−−−−= lululululum γγ&&        (1) 

where u l( )- is the displacement of particle with number l  ( , ,... )l = 0 1 . 

 

 
Fig.2. One-dimensional crystalline lattice with additional bonds. 

 

Dispersion law for such type chain is  

ω
γ γ2 0 24

2
( ) sink

m m

ka
= + ,            (2) 

where a  - is the lattice constant, γ 0  and γ  - corresponding force constants. 

If γ 0 0=  and γ > 0  from (2) we found acoustical branch dispersion law: 

ω = 2
2

S

a

ka
sin ,               (3) 

where S
m
a

2 2=
γ

, and k  - wave vector of the corresponding flat wave. The simplest one-

dimensional crystalline model of the physical vacuum is the monoparticle chain with the 

dispersion law (3). In this case value S  has a sense of velocity of light (S≈c) and fundamental 

constant “a” is the elemental translation. As we pointed before and this constant is close to 10
-35 

m. So at small wave vector k  in (3) we can use linear approximation: ck=ω  . 

 Such relation is the first approximation for photonic dispersion law of the physical vacuum.  

If γ 0 0>  and γ > 0  we have dispersion law of crystalline chain with positive mass of 

corresponding quasiparticles: 

ω ω2

0

2
2

2

24
2

= +
S

a

ka
sin ,             (4) 

where ω
γ

0

2 0=
m

 and S
m
a

2 2=
γ

 . 

Accordingly, when γ 0 0>  and γ < 0  we have optical branch with negative mass of 

corresponding quasiparticles: 



72 

 

ω ω2

0

2
2

2

24
2

= −
S

a

ka
sin .            (5) 

At last when γ 0 0<  and γ > 0  we have: 

ω ω2

0

2
2

2

24
2

= − +
S

a

ka
sin .            (6) 

where ω
γ

0

2 0=
m

  and S
m
a

2 2=
γ

 . 

 We shall use linear approximation for photonic dispersion law ( ck=ω ) and propose that 

that the new lattice constant d (d » a; a – is lattice constant of the initial vacuum lattice) of 

physical vacuum takes place due to structural phase transition in vacuum. For three-dimensional 

case physical sense of the period d is the diameter of the globules, forming new crystalline phase 

state of the physical vacuum as a result of the structural phase transition from the initial cubic 

lattice, lattice constant of which is equal to “a”. Thus we describe physical vacuum as  globular 

photonic crystal, constructed from compact packed globules, with new lattice constant, equal to 

d.  In this case we have at the edge of the new first Brillouine zone the following photonic 

frequency value: 

d
c
π

ω =1 ,               (7) 

and accordingly for k = 0  (Γ-point):  

d
c
π

ω 20 =                (8) 

Approximately we may use (4-6) relations for description of photonic band laws in photonic 

crystal if we use d - constant instead of a. The relation 
2

sin2
kd

d

c
=ω  corresponds to the lowest 

photonic band; (5) - to the second  and (4) - to the third one (S=c d=a). At small wave-vector 

value we may use quasirelativistic approximations as : 

ck=1ω                 (9a) 
222

0

2

2 kc−=ωω               (9b) 
222

0

2

3 kc+=ωω               (9c) 

222

0

2
kc+−= ωω              (9d) 

In these relations c-constant has a sense of velocity of light. So we can conclude that photon-

like dispersion law (9a) correspond to photons, (9c) - to relativistic particles with positive rest 

mass, (9b) - to relativistic particles with negative rest mass, (9d) - to relativistic particles with 

imagine rest mass. Thus in photonic crystals we have the unusual situation, when photons 

become heavy particles with negative or positive mass. For dispersion law, described (5) and 

(7b) equations, we have come to conclusion that the sign of  







dk

dω
 - value is negative. Consider 

the situation, when light ray falls onto the surface of photon crystal at zero angle opposite to unit 

vector i with light velocity equal to c = - ci.  So in this case  group velocity of light vector 







dk

dω
i 

is opposite to wave vector k = = ki (i - is the unit vector, opposite to the direction of incident ray). 

Group velocity of light vector 







dk

dω
i  has the same direction as c = - ci  – vector and phase 

velocity of light vector
k

ω
i  has the same direction as k wave vector. For normal incidence of 

light ray onto the surface of photonic crystal we have:  
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k

ω
i =c/n,              (10) 

where c= - ci  - is the velocity of light vector out of the crystal and n is refraction index. So in 

this case sign of n is negative. Accordingly for the third branch the sign of  







dk

dω
 - value is 

positive and sign of n also is positive. 

For any case we have common relation for index of refraction as: 

n
ck

k
=
ω( )

,              (11) 

where ω( )k  - is the dispersion laws according  to (3-5) or (7a-7c). The sign of n is negative if the 

sign of  







dk

dω
 - value is negative and the sign of n is positive if the sign of  








dk

dω
 - value is 

positive. 

We have proposed that physical vacuum is some type of globular photonic crystal with lattice 

constant L=d, corresponding to weak interaction length. According to the known theory [2] 

heavy boson energy is close to E eV
w
= 90Γ . So we can estimate weak interaction lattice constant 

L from (8)-relation: 

m
E

c
L

w

17

199

834

1075,2
106,11090

14,31031005,122 −
−

−

⋅=
⋅⋅⋅

⋅⋅⋅⋅⋅
==

πh
.    (12) 

Such value is in correspondence with that, known from weak interaction field theory [2]. 

Globular photonic crystals model for physical vacuum, developed by us, predicts the 

existence not only heavy photon with positive mass, but also the heavy photon with negative 

mass according to (7b) relation. Such type excitations so far have not been observed. 

Dispersion laws (6) and (7d) predict also the existence of so-called tachyon-like particles in 

physical vacuum. We suggest that such type particles might be elemental excitations, 

corresponding, for instance, to longitudinal electromagnetic waves, which are unstable at small 

wave vector value.  

Each elemental globule of real photonic crystal is a spherical resonator. Total symmetric 

mode of such resonator corresponds to scalar waves, propagating along the photonic crystal. 

Main resonance frequency of such resonator is close to value: ω
π

r
S
L

= , where  L  - is the size of 

the globule, S – sound velocity. In common case the global resonance modes with frequency 
r

ω  

have deformational nature and behave as tensor-type excitations. Dispersion law of the 

corresponding tensor-type waves may be written as: 

ω ω2 2 2 2= +
r
S k .             (13) 

Elemental excitations of such kind waves are even type. So such type excitations we shall call 

“evennons”. If S-constant relates to the electromagnetic wave velocity: S=c, we have a new type 

of electromagnetic waves – tensor or even type electromagnetic waves and corresponding 

elemental excitations - “eventons”. Note, that gravitational waves have also tensor type 

symmetry properties. So we can suppose that gravitational waves are some kind of deformational 

perturbations of physical vacuum as real media and are one type of even electromagnetic waves. 

Thus elemental excitations of gravitational waves -gravitons- are indeed eventons. 

 

3. Opportunity of generation and observation of even-type waves in media 

and physical vacuum 
Now there is the problem of experimental observation of even-type sound and also 

electromagnetic waves. We have proposed that using two-photon scattering of light, excited in 

real condensed matter (crystal or liquids) and also in globular photonic crystal might solve this 
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task. Nanoresonator inelastic light scattering of light in globular photonic crystal has been 

recently recorded in experimental work  [3]. The results of this work are illustrated by Fig.3. 

Continuous laser with monochromatic line of generation used for exciting of the spontaneous 

secondary emission in this case.  We can see several Stokes(S) and antiStokes(A)  satellites, 

corresponding to excitations of different nanoresonator modes of opal globules. The intensity of 

S and A satellites are essentially less, then exciting line intensity. Such property is typical for 

spontaneous scattering of light. If high-power laser pulses are used for excitation of inelastic light 

scattering, so-called stimulated light scattering may be observed. In this case the intensities of 

exciting and satellites lines become comparable. To now such experiments have been realized by 

author of this paper with N.V. Tchernega and A.D. Kudryavtzeva. Stimulated nanoresonator light 

scattering in globular photonic crystals (artificial opals) have been observed by using of giant (Q-

switched) ruby (694.3 nm) laser pulses with intensity close to 10
8
-10

10
W/cm

2
. 

 

 

I, arb. units 

 Frequency,GHz 

Fig.3. Spectra of nanoresonator scattering of light in globular photonic crystal, 

corresponding to excitation of even-type modes, obtained in work [3]. 

 

In this case only one S-satellite was observed. The intensity of this S-satellite is comparable 

with intensity of exciting line (694.3 nm). As a result of stimulated nanoresonator light scattering 

even-type sound waves should be generated in globular crystal. Such waves are propagating in 

media with velocity, close to known value of sound velocity in the condensed media.  The 

recording of even-type sound waves may be realized with the help of piezoelectric detectors. 

According to symmetry properties of such waves, at the “vacuum-media” boundary such waves 

should be converted into electromagnetic even type (gravitational) waves and vice versa. 

Another type of scattering has been observed for fused silica (see Fig. 3). In this case we can 

see distinct low-frequency (60 cm
-1 

) maximum, known as Boson peak. Boson peak emerges as a 

result of scattering on nanoparticles, existing in fused silica; the size of these nanoparticles is 

near 2 nm. 
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I, arb. un. 

ν,cm
-1 

Fig.4. Low-frequency (60 cm
-1 

) maximum (Boson peak), according to nanoclasters of 

amorphous quartz in Raman scattering spectra (at left), corresponding to tensor-type 

spontaneous process. 

 

Even-type waves can be also excited as a result of Raman scattering on total symmetrical 

molecular modes in liquids (C6H6, CS2 and others) and crystals. In these cases the mode 

frequencies correspond to 500-1000 cm
-1

 value, i.e. to 10
13 

 Hz –range. Accordingly as a result of 

stimulated Raman scatterings of light the generation of corresponding eventon-type waves should 

be take place. Experimental setup for stimulated Raman scattering observation is illustrated by 

Fig. 5. 

 Recently infrared emission simultaneously with Raman scattering of light has been predicted 

[4] and observed. So we have the opportunity to record even type waves, generated as a result of 

stimulated Raman scattering, by means of infrared emission recording.  

 

 

1          2                4                  5       6      7

3
 

 

Fig.5. Experimental setup for stimulated Raman scattering observation.  

1 - laser,  2- glass plate, 3 – system of laser emission recording, 4- lens, 5 – sample, 6- exit 

window (philter), 7- detector.  
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In our recent work [5] we have shown that the efficiency of inelastic light scattering 

essentially increased for ultra dispersive substances, placed into resonator cuvette. In these 

conditions the threshold for stimulated Raman scattering observation should be essentially 

decreased. 

 

4. Conclusion. 
Thus we have come to the next results. 

1. Dispersion law of acoustical branch of real crystalline lattices resembles photon 

dispersion law of physical vacuum. Accordingly we should expect dispersion of light 

velocity for large enough wave vector value. 

2. Physical vacuum may be described as globular photonic crystal with super-lattice 

constant equal to ~10
-17

m (distance of weak interactions).  

3. Relativistic law of dispersion of elemental particles may be obtained from more common 

relations by using of lattice models of physical vacuum. The particles with negative and 

imaginary mass should also exist. 

4. Even-type emission may be generated in real photonic crystals, molecular media and in 

physical vacuum as a result of stimulated light scattering. 

 

This work was supported by Russian Foundation for Basic Research (project No. 05-02-

16205 and project No. 04-02-16237). 
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The ether in modern physics interprets the formal structure of Relativity (Special and General), and suggests ways of unifying Relativity 

with Quantum Mechanics. The modern ether is a relativistic medium, compatible with geometrical, non-classical formulations of 

physics. It serves as a disclosing model, indicating the relationship between quasi-classical Poincare-Lorentz Relativity – couched in 

terms of a Lorentzian ether – and Relativity expressed in the geometrized tradition established by Einstein and Minkowski. The vortex-

sponge mechanical analogue, which removes long-standing methodological objections to Poincare-Lorentz Relativity, is the most 

promising analogue. When geometrized it provides an equivalent to Einstein’s space-time of General Relativity. The vortex-sponge 

resembles a Dirac ether. It can be regarded as a chaotic medium, generating phenomena interpreted by dynamic algebras, or nilpotent 

theories. Use of the concept no longer implies an adverse attitude to the Einstein-Minkowski tradition, and the long-standing ether–

relativity polemic is a sterile misconception.  

 

The “Ether Question” 1905-2005. 

The ether in 21
st
 C physics is a continuum theory, generally non-classical, which interprets fundamental activity in 

terms of space-time geometry or action in a medium. For full development, it requires a mechanical analogue to 
supplement the geometrical interpretation.. There are too many particular ether theories to review.  This paper 
concentrates on the comprehensive ether theories which cover SR & GR, and which promise to unify relativity with 
QT, ED and cosmology. The modern ether is the consequence of two programmes. One is the Poincare-Lorentz 
programme; the other is the Einstein-Minkowski programme. Both interpret the accepted formal structure of 
relativity, and are practically indistinguishable. Once regarded as mutually exclusive ways of interpreting relativity, 
they are now regarded as alternative ways of interpreting the formal structure which can be “mapped” or translated 
into each other Philosophy and history of science are needed to correct misconceptions about ether and relativity 
which originated between 1910-1920 and which still confuse the “ether question”. A small number of ether theorists 
link the term to an anti-Einstein, anti-relativity polemic and thereby discredit its use, but modern ether theory does 
not deny the positive achievements of Einstein’s relativity, Minkowski’s geometry, non-classical physics, multi-
dimensional geometrization, GMD, and relativistic cosmology. The ether-versus-relativity polemic has delayed 
acceptance of the ether concept in present-day physics. The rise of Einstein’s Special Relativity, with its 
abandonment of the then-prevailing concept of ether, caused it to be set aside as a redundant idea. The rise of 
Einstein’s General Relativity, with its transformation of long-standing concepts of space and time, suggested that the 
classical Newtonian ether was incapable of interpreting 20

th
 C physics. The legitimacy of the ether concept has been 

an enduring question in physics since 1920. Many misconceptions abound concerning “absolute” and “relative” 
definitions of ether, and its many roles.  The concept has a complex history, as have other fundamental terms like 
mass, space, time, energy.  Too many ether theorists fail to clarify which are the essential features of an ether, and 
whether the several kinds of ether, found in contemporary physics, are radically different from each other, or whether 
they are all aspects of one fundamental medium. In the early 19

th
 C, ether was a subtle medium made up of fine-

scale matter, but this gave way to ether as a non-ponderable medium in which matter was a configuration. The 
evolving concept of modern ether, and the new concept of the electron played major roles in the evolution of early 
relativity between 1890-1910.  The main early expositions of special relativity were Poincare-Lorentz relativity 
using a classical ether, and Einstein-Minkowski relativity expressed in terms of geometrized Space-Time. The 
Poincare-Lorentz exposition of relativity has continued to this day as a minority programme, and much modern ether 
theory has come out of it.  Because of this there is an unfortunate tendency to associate the term ether with a narrow 
definition (absolutist, classical, Newtonian) linked to the Poincare-Larmor-Lorentz programme, which was 
developed by Ives, Builder, Prokhovnik, et.al Even more unfortunate was the association of the ether with a 
polemicists’ campaign against Einstein’s Relativity, the geometrization of physics, and the use of non-Euclidean 
geometry. This polemicists’ campaign has, at various times, been linked to anti-semitism, and pseudo-science made 
to serve political, metaphysical and theological interests.  This polemic, continued by an active minority, brought the 
concept into disrepute, and keeps alive misconceptions about ether which are completely unjustified. The other great 
source of modern ether theory is quantum theory (see below).  
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Ether, Geometrized Physics & Non-Euclidean Space-Time. 
The geometrizing of physics, associated with the Einstein- Minkowski exposition of special relativity took place for 
good reasons. Unresolved difficulties faced the Lorentz theory of electrons, the electromagnetic world view, and the 
undetected ether. Failure to provide a mechanical interpretation of the ether robbed matter (and thereby instruments) 
of any satisfying material underpinning at a time when matter was increasingly thought of as an ethereal state. The 
conceptual and methodological impasse was escaped by Minkowski’s geometrizing of the Lorentz theory of 
electrons, and fusing it with Einstein’s early special relativity. Einstein later developed the “Einstein-Minkowski” 
geometrized exposition to interpet gravitation, using non-Euclidean geometry. Non-classical general relativity, and 
relativistic cosmology became exemplary physical theories. Geometrized physics became normative after the 
success of General Relativity in the 1920s, and led to the later development of Geometrodynamics. Later, 
interpretations of GR and cosmology were devized in classical terms, using the evolved P-L programme, but these 
followed Einstein, and reinterpreted what he did. They could not replace him, let alone establish that his methods 
were in error. In fact, the ether was recast in relativistic terms, though the P-L classical ether remained as an optional 
element in a quasi-classical subgroup within a larger body of relativistic ethers. 

The major concepts of ether developed within two main classes, though there were many other types. One main 
class contains ethers defined as “Space with Physical Properties” (Einstein, Eddington, Whittaker), or “Ether as 
Field” (Steinmetz, Dirac). These were compatible with general relativity and non-classical theories. They enjoyed a 
long history, and in the 19

th
 C were discussed by Clifford, Riemann and Pearson. A second main class includes the 

classical ethers, serving to provide a background Euclidean space in which Newtonian absolute time prevailed, and 
energy and momentum were conserved. Because they interpret relativistic effects from a classical base, they are 
termed “quasi-classical” or “pseudo-classical” theories. This is the ether of Poincare-Lorentz Relativity, as presented 
by Ives, Builder and Prokhovnik. Generally, this ether lacked a mechanical analogue, which was essential for a 
stronger conceptual and methodological foundation. Failure to detect this ether by universally repeated experiment 
remains a major conceptual flaw in these Lorentzian theories because their most vital feature remains undetected by 
science. Between 1920 and 1950 there emerged a transformed ether theory out of which came the ether of present 
day physics. The Lorentz Theory of Electrons gave birth to the exposition of special relativity in terms of 
observations conducted with rods and clocks, subjected to specific synchronization techniques and slow instrument 
transport velocities. This Rod-Contraction; Clock-Retardation Ether Theory (Erlichson) is associated with Lorentz, 
Larmor, Broad, Ives, Builder, Prokhovnik, Mansouri and Sexl, Levy and many present day advocates of a Poincare-
Lorentz interpretation of the agreed relativistic formal structure. A comprehensive, non-ad hoc derivation of Special 
Relativity was established and extended to cover General Relativity and Cosmology. These quasi-classical 
interpretations of GR and cosmology were openly recognized as valid, consistent alternative presentations of 
relativistic physics by eminent relativists like Eddington, but there seemed to be no pressing reason why the 
geometrized, non-classical Einstein formulation should not remain the norm. Einstein’s theory was better understood 
and was conceptually and methodologically superior.  
 
Hartley, Kelly & the Vortex Sponge: The Kelvin-Larmor Dynamic Ether Analogue 
In the 1950s, Hartley, a colleague of Ives at Bell :Laboratories, developed the Kelvin-Larmor vortex-sponge 
mechanical ether analogue to provide a new dynamic interpretation of matter, ether, space and time. This was 
developed in later years, to the present time, by E M Kelly, Dmitriyev, Winterberg et al. to interpret quantum 
mechanical and other fundamental phenomena. The vortex-sponge provides a mechanical analogue which 
underpins the Poincare-Lorentz theories and removes conceptual and methodological weaknesses by remechanizing 
the Lorentzian world-view.  If this is not done, geometrization remains the only obvious way of expressing relativity.  
The mechanism was imagined as a classical array of gyrostats held in a frictionless framework, which could take 
different equivalent forms, including hydrodynamical analogues. The vortex-sponge put a classical rod and clock at 
each point in a classical, Euclidean space, with Newtonian clock time regulated throughout.  The passive, featureless 
Lorentzian ether gave way to a dynamical modified Kelvin-Larmor ether which filled or defined space and time. 
Material particles were represented as spherical standing waves, in a random atmosphere of vortex rings. These are 
equivalent to miniature Langevin clocks, idealized interferometers, and the combined rods-and-clocks used by 
Builder, Prokhovnik, Jennison and Clube to extend the Poincare-Lorentz ether-based theories to cosmology, and to 
set up a space-time metric. A relatively “large-scale; long-time” view of phenomena, in which the wave-particles 
retained their form, provides a complete interpretation in Lorentzian terms of SR, GR and much of cosmology. The 
imaginary surveying operations and measurements with rods and clocks could be referred to an ultimate set of 
standards motionless in the urether. However, a non-Lorentzian interpretation was equally available (see below) 
following Einstein and Minkowski. 

If a view is taken of phenomena over much smaller length scales, and shorter time intervals, the instruments 
become disordered by the turbulence of the vortex-sponge and wave-particles used as ultimate measuring 
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instruments encounter intrinsic lower limits to meaningful measurement of spatial intervals and clock-time ordering.  
There are random dislocations of measuring rods, and clock action.  Instrument activity becomes discontinuous.  The 
dynamic pulsations of the vortex-sponge require higher-order geometries and  the classical scheme is no longer 
adequate. Energy exchange between wave-particle and ether is in fixed units or quanta, and a way is suggested of 
incorporating quantum mechanics and relativity into the same analogue. At the present time, E M Kelly, V 
Dimitiyev and F Winterberg continue to extend the range of the vortex sponge.  Donnelly (University of Oregon) 
has produced laboratory-scale vortex-sponges using supercooled liquids, which exhibit quantum mechanical 
behaviour, and this research has provided a growing body of vortex-sponge theory applied in aeronautics, 
hydrodynamics, meteorology, and cryogenics.  It is a quantum-mechanical medium, able to bear wave-particles 
which obey the principles of general relativity.   It discloses relationships between the P-L classical exposition of 
relativity, and the normative Einstein geometrical exposition which shows them to be aspects of the same thing, 
rather than mutually exclusive rivals. 

 
Einstein’s Ether & the Vortex-Sponge. 
Space and time measurements using a wave-particle as a combined rod-and-clock, in a vortex-sponge ether, in a 
gravitational field, as viewed from different platforms, gives the familiar “Einstein-GR” relation for the space-time 
interval. Ives developed an equivalent relation (the “chronotopic interval”) within the context of Poincare-Lorentz 
Relativity, without using a mechanical analogue. This relation can be given a classical, or a non-classical 
interpretation. Definitions concerning basic rods and clocks (rigid or distortable?) determine whether or not the 
chronotopic interval is given a classical interpretation (referred to a background Lorentzian frame) or a non-classical 
formulation, in terms of non-Euclidean space-time geometry in the gravitational case.  Both space-time geometries 
are practically equivalent. One can map back and forth between them. They are the space-time counterpart of two 
maps, drawn to different projections, used for navigating between two places on earth. Each map projection (e.g. 
Mercator’s, or “equal-area” projection) has its own convention for calculating direction and distance at each latitude, 
because the metric scales differ. A navigator uses the simplest projection or geometry adequate for the task. The 
appropriate geometry might be decided by the coarse or fine scale nature of the job. No projection or geometry is 
more natural, or more real than any other, because the different metrics are not possessed by the earth – they are 
conventions for enabling direction and distance to be computed. This is exactly the same with the quasi-classical and 
the non-classical geometries, projections and metrics by which the Poincare-Lorentz and the Einstein-Minkowski 
programmes survey and compute space-time intervals associated with the same physical problem. 

The vortex-sponge, originally presented as a classical mechanism of gyrostats and linkages, or a hydrodynamical 
equivalent, can be geometrized and interpreted in non-classical terms. Kron’s geometrization of any mechanical and 
electromagnetic ensemble  shows a general technique for achieving this. The vortex-sponge geometrized is a world-
ether, equivalent to the space-time of Einstein’s geometrized general relativity, and possessing the characteristics of 
the fundamental plenum of geometrodynamics depending on whether a coarse or fine scale view is taken.  The 
“static” or geometric presentation of space-time, can be split into the “Frame-Space” perspectives in which 
laboratory measurements take place. Measurements in these laboratory frames can be correlated and interpreted 
using the non-Classical Einstein-Minkowski tradition, or the Poincare-Lorentz pseudo-classical tradition.  It is a 
matter of choice and convention in defining ultimate measuring units as Ives realized, though he preferred the 
Lorentzian interpretation. 

Kostro’s recent research into Einstein’s later writings identifies a concept equivalent to ether, which Kostro terms 
“Einstein’s Ether” This is an example of “Ether as Field”, or “Ether as Space-Time”, proposed by engineers 
(Steinmetz) and physicists (Whittaker, Dirac) after 1920. Kostro refers to a dynamic and a static image. In the 
dynamic image, the motion of reference spaces is studied in the (clock) time of the laboratory reference frames. In 
this frame space perspective, the position of the reference spaces changes in time. The vortex-sponge, represented by 
a classical array of gyrostats or the hydrodynamical equivalents, can model frame-space phenomena and it provides 
an underpinning for the Poincare-Lorentz ether theory.  The static or geometric image presents space and time fused 
together into the space-time continuum, and the reference space-times are composed of world-lines and 
instantaneous spaces. Kostro argues that this relativistic ether, or world ether, is not composed of world-lines or 
instantaneous spaces, but is a four-dimensional continuum made up of events. Geometrizing the wave-particle of the 
vortex-sponge into an event-particle and  surveying space-time with it, leads to the same result. Einstein’s Ether, and 
the geometrized vortex-sponge “World-Ether” are the same. Modern ether theory is not incompatible with Einstein’s 
Relativity, or developments such as Geometrodynamics (which deal with a fine-scale perspective). The 
misconceived “ether versus relativity” and “Lorentz versus Einstein” polemics, have delayed a fruitful unification of 
two main programmes in Relativity, that of Einstein and Minkowski, and that of Poincare and Lorentz. They have 
hindered the subsequent development of a unified relativistic ether theory, and associated the term “ether” with 
archaic ideas. 
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At present there has been no unequivocal experimental distinction drawn between these two programmes, which 
have practically the same formal structure. Undisputed detection of ether drift would favour the Poincare-Lorentz 
programme in the context of relativity, but would by no means destroy the validity of geometrized, non-classical 
relativity. Present day ether drift experiments have not yet amassed sufficient evidence to favour the claims of the 
Poincare-Lorentz exposition, despite careful and persistent work carried out with modified MM apparatus, Fizeau 
double toothed wheels, and the Sagnac apparatus. Individual experiments may raise a question mark, but these tests 
need to be repeated many times, by disinterested experimenters, to separate misinterpreted results (given wide 
publicity by over-enthusiastic polemicists) from the genuine observations of colleagues whose work deserves 
consideration. Sometimes unsubstantiated claims that ether drift has been detected are acclaimed uncritically by 
ether theorists looking for supportive experimental evidence. Over-eagerness to accept the results of single 
experimenters, working unseen, based on relatively few tests, is a betrayal of scientific caution and has done much to 
bring the ether hypothesis into still deeper disrepute. It will require hundreds of undisputed detections of ether drift, 
carried out by impartial investigators in first class laboratories, all over the world, with impartial witnesses, and 
publication of meticulous records, before the normative status of Einstein’s relativity is called in question. The 
question of drift is vital. It must be addressed – but it is up to ether theorists to beware the unjustified claims of anti-
relativity polemicists if they are to win a fair hearing for their ideas. 
 
Ether, Cosmology & Gravitation. 
Einstein’s relativity became the norm when it was extended from the Special Theory to cover gravitation and 
relativistic cosmology. Any comprehensive ether theory must cover the same ground, and a considerable body of 
present-day ether theory does so. The most important group is expressed in terms of Poincare-Lorentz theory, using 
the techniques of the rod-contraction; clock-retardation exposition. S. J. Prokhovnik interprets cosmology using 
Poincare-Lorentz relativity, with an ether as reference frame, and taking rod-contraction and clock-retardation as real 
phenomena. Prokhovnik does not advocate ether as a hidden mechanism, but he recommended the absolute 
reference frame of Poincare and Lorentz, and he uses the “instrument transport” techniques of Langevin, Ives and 
Builder for synchronizing clocks in inertial frames. Prokhovnik stresses the causal significance of absolute velocities, 
and defines absolute as “relative to the universe”. He treats the galaxies as the fundamental particles of the universe at 
large, which define an expanding frame filled with background radiation. Distribution of “particles” is seen as 
homogeneous  by an observer on any one galaxy-particle.  The universe expands according to Hubble’s law, and the 
cosmological principle holds. Prokhovnik shows that the Robertson-Walker metric applies and defines a unique, 
observable, cosmological reference frame in which light is propagated in all directions with a speed always 
measured as “c”. In thought experiments one can refer to non-isotropy in the speed of light with respect to a moving 
body in the frame, but this is not observable because rod contractions and clock retardations make the as-measured 
speed “c”. This is a common feature of the entire group of Poincare-Lorentz ether theories, and is the source of much 
criticism. Prokhovnik claims that astronomy has revealed a unique, fundamental frame, within which moving bodies 
are effected by motion. Velocity with respect to this expanding reference frame can be estimated from the 2.7K 
microwave background radiation. The expansion of the frame provides a measure of cosmic time, which enables a 
clear, paradox-free exposition of relativity to be presented. The work of Prokhovnik and Builder has been developed 
further by Paparadopoulos. Wegener argues that the “spray substratum” of Milne meets the requirements set out by 
Builder and Prokhovnik for a universal reference frame. 

Clube presents theories of gravity and cosmology, along Poincare-Lorentz lines, using an ether described as a 
superfluid or material vacuum. Clube develops the de Sitter-Atkinson gravitational theory as an approximation to a 
more fundamental Lorentz-Dicke gravitational theory. It models the production of particle pairs in the physical 
vacuum (ether) and relates a wide range of astrophysical and cosmological phenomena within a Lorentzian theory of 
gravity, couched in terms of a static model of the universe. Its chief features include redshift arising from vacuum 
processes; baryonic and non-baryonic matter formation in the ether; and the suggestion that phase-locking of 
fundamental particles may involve a principle more important than relativity. It should be compared with the work 
of Surdin.  

The theories of Arminjon, Broekaert, Podlaha, and Sjodin form a consistent group, which can be related to work 
by Clube, Roscoe, Surdin, Prokhovnik, Builder, Rongved, d’Atkinson, Cornish, and Ives. The vortex-sponge 
analogue, though not forming an essential part of these theories, can provide a mechanical underpinning. Arminjon’s 
work typifies this school of thought. Gravitation is modelled after Euler as an Archimidean thrust in a fluid ether. 
Particles of ponderable matter are localised flows in the ether, and creation and annihilation is represented in fluid 
terms – an old idea, developed to a high order by Karl Pearson and Schuster in the 1880s. Gravitation is a 
“smoothed-out” macro-force, in which ether pressure plays a crucial role. This is compatible with Hartley’s vortex-
sponge interpretation. The ether fills the homogenous space of SR, and the effects are interpreted by rod contractions 
and “Larmor clock slowing”. Gravitation is due to an apparent variation in ether density, or heterogenity of space, 
with gravitational rod-contraction and clock slowing. These theories constitute a major development of the Poincare-
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Fitzgerald-Larmor-Lorentz-Ives programme. Interpretations of space-time employ two metrics.  There is a flat 
background metric (against which rod-contractions and clock slowings are defined), and a physical metric, which is 
curved in the gravitational case.  This is the fundamental characteristic of the Poincare-Lorentz programme, which 
has the “Ives Group of theories” as perhaps its most representative member. The ether is identified with the 
background metric. The “uncorrected” readings of rods and clocks defines the “physical metric”. The quasi-classical 
expositions of relativity (d’Atkinson, Cornish, Clube, Rongved) refer all instrument readings back to the ether .This 
is a legitimate way of interpreting the relativistic formal structure which  a minority prefer to use. The majority argue 
that until the background ether is detected by universally repeated experiment in a clear and undisputed manner, the 
instrument readings should be taken as “read-off”, and not reduced into an undetected ether-state. This is the 
orthodox relativistic position, which is superior on methodological grounds. They are equivalent. One can map from 
one to the other.  They are by no means mutually exclusive. Ives’ “chronotopic interval” paper is worth consulting in 
this respect.   

Arminjon and his colleagues explore various options for developing these theories. Rod contraction can be 
treated as anisotropic, lying along the ether pressure gradient and line of gravitational acceleration (Arminjon), or as 
being isotropic (Podlaha and Sjodin). The anisotropic assumption gives the Schwarzschild exterior metric in the 
static case with spherical symmetry, giving the same observable results (light ray behaviour) as does general 
relativity starting with the Schwarzschild metric. Problems are encountered with the weak equivalence principle, but 
Arminjon argues that these will occur with general relativity also, with anisotropic metrics. These problems are not 
encountered with the isotropic case. 

Broekaert offers an alternative scalar interpretation of general relativity, following geometrical conventions 
introduced by Poincare, and presenting gravitationally modifed Lorentz Transforms.  Depending on which isotropic 
scaling functions are applied, one set of LT distinguish between a “natural geometry” which is affected by 
gravitation, and a co-ordinate geometry which is not affected by gravitation. A spatially varied speed of light is 
suggested. Different scaling functions give a different set of transforms giving the invariant (locally observed)  speed 
of light and the local Minkowski metric. This group of theories contains work by Sjodin on gravitation and 
determination of one-way velocity of light; and by Podlaha, which presents a comprehensive ether model of the 
physical vacuum and wave-particle which is similar in many ways to the vortex-sponge and wave-particles of 
Hartley.     
 
Grand Comprehensive Theories. 
Several comprehensive ether theories cover a wide range of phenomena from the quantum to the cosmic scale. 
Examples include the theories of Cavalleri, Dimitriyev, and Winterberg. In a brief review all that can be done is to 
summarize a few major features and direct the reader to the references. 

G. Cavalleri has developed a comprehensive ether theory based on a stochastic medium made up of vortex 
elements for interpreting QED and a wide range of electonic and electromagnetic phenomena. Cavalleri proposes 
that the zero point field of QED is caused by the classical EM radiation of all the particles in the universe, emitted 
since the “big bang”, and that it may be regarded as a real ether. Motion of rods and clocks through this ether 
produces the length contraction and clock retardation of the Poincare-Lorentz or Ives group of theories. Cavalleri 
shows that the power spectral density is Lorentz invariant, and that experiments of the Michelson-Morley type, and 
their equivalent, cannot detect ether drift. However, if the power spectral density is limited to prevent infinite energy 
density in a zero point field regarded as real, the relativistic invariance is lost, and there should be a privileged 
observer for which the zero point field ether is isotropic. Cavalleri suggests that this ether might be detected by 
accelerating a charged hydrogen atom in a synchrotron. An energy of 20Tev would be needed to detect an effect 
interpreted as “friction in vacuo”. Cavalleri, like Winterberg, rejects the metaphysics of the Copenhagen school, and 
aims for realism.  He regards the zitterbewegung of Schroedinger as a real phenomenon located in the physical 
vacuum and not an illusory effect due to uncertainty. He regards the zero point field as the producer of fluctuations in 
velocity direction which amplify fluctuations in electron position, and generate quantum mechanical effects. His 
ether is a space filling stochastic medium reacting with matter within the framework of Poincare-Lorentz relativity.        

V.P.Dmitriyev proposes a comprehensive theory covering a wide range of fundamental physical phenomena 
from QM to GR., based on mechanical ether analogues developed from the models of Kelvin, Hicks, McCullogh 
and Larmor. He shows that solid, liquid and mechanical ether analogues are equivalent, and unusually presents 
many of his findings in terms of a solid elastic continuum analogue. Much of his work is also expressed using the 
vortex-sponge. Dmitriyev remarks that the Yang-Mills theory of physical fields can be used to create a complete 
theory in terms of a solid body with singularities, but he reverses this procedure to devize a theory of physical fields 
and particles using an elastic solid ether. There is no empty space. All space is occupied by physical vacuum or ether 
through which all interactions are transmitted, including EM waves and gravity waves. Beginning with  a linear-
elastic substratum,  Dmitriyev shows that this is Lorentz-invariant because it is practically incompressible, and that 
the universe is practically static. Material particles are approximately modelled by localised energetic excitations 
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(solitons) in the ether, which ideally should be modelled in non-linear terms. Models of quantum particles, 
gravitation and GR are provided. GR is treated as a sub-algebra in the non-linear theory of elasticity. The solid 
continuum model, provided with internal rotation is equivalent to the vortex-sponge, which Dmitriyev uses, along 
with dipole models, to interpet microphenomena and asymmetry in the macroscopic world. As with Winterberg’s 
model, Dmitiyev’s system is hierarchical, having six “levels” of phenomena, which are classical mechanics; GR and 
QM; the solid substratum; the solid substratum with internal rotation; the vortex-sponge regarded as chaotic 
turbulence in the primary medium; and the primary medium. It would be better if the whole picture could be 
expressed in terms of the vortex-sponge alone. 

F. Winterberg , like most modern ether theorists, accepts the formal structure of relativity but is critical of 
attempts to develop the geometrical theories by adding dimensions of space-time, starting with the adding of a fifth 
dimension by Kaluza and Klein to unify gravity and EM, and ending with the multidimensional space-times of 
superstring theory.  He believes (as do many supporters of P-L ether theory) that physical reality is 4-d space-time 
which must be made the foundation of any theory which avoids “physical impossibilities or absurdities” like infinite 
stresses in zero diameter strings. Winterberg works within the Poincare-Lorentz framework, with rod-contraction 
and clock retardation being real phenomena caused by motion through a substratum.  Insisting that all modern ether 
theory must be within a quantum mechanical framework, Winterberg models the substratum as a superfluid ether 
full of quantized vortices.  The superfluid ether is made up of an equal number of positive and negative masses 
called Planckions, densely packed together which preserve the zero-point energy fluctuations of the physical 
vacuum, but make the average vanish. The analogue interprets vector gauge bosons, charge and charge quantization; 
special relativity as a dynamic symmetry; gauge invariance; Dirac spinors; and elementary particle mass as a 
function of Planck mass. For many of its functions, Winterberg’s ether resembles the vortex-sponge. Indeed in 
considering its energy spectrum, Winterberg used results from liquid helium theory (phonon-roton structure) 
presented by Feynman in 1954, and supported by recent laboratory investigations on vortex-sponges using low 
temperature helium. 

Winterberg’s model is hierarchical. Elementary particles are bound states in the superfluid quantum mechanical 
ether. The model provides a classical description of Schroedinger’s zitterbewegung derived from Dirac’s equation. 
A QM interpretation is obtained compatible with relativity. The model analyses wave function collapse  in a 
“realistic, objective” manner, rejecting the Copenhagen interpretation. Like Prokhovnik, Winterberg regards very 
large systems of galaxies as defining a privileged frame of reference at rest in the ether. This ether is Heisenberg’s 
fundamental field, admitting wave modes of superluminal velocity. Winterberg argues that an absolute-space-time 
structure allows for a realistic interpretation of wave-function collapse. He regards the Minkowski space-time 
continuum, and the Riemannian manifold, as illusions caused by true physical distortions which should be 
interpreted in terms of Poincare-Lorentz theory using a real, absolute ether.  This reflects the attitude of many ether 
theorists.. 
 
Dirac Ether & the Physical Vacuum 
An ether was proposed by Dirac to unify electrodynamics and quantum mechanics in a manner different from that 
found in the QED programme. E.M. Kelly used the vortex-sponge to effect this unification, but others have tried to 
develop Dirac’s ether, to achieve the same result, without reference to the dynamical analogue. De Haas’s recent 
efforts are important contributions. De Haas defines Dirac’s ether as a revived Maxwell’s ether, which requires that 
the non-gauge invariant stress-energy tensor has non-zero, non-symmetric magnitude in space-time.  If so, the 
Lorentz force and Poincare force can be obtained, with Poincare force represented by a translation pressure, or 
“something rotating in the Maxwellian operational ether”. (In the vortex-sponge, these are forces resulting from ether 
pressure due to the atmosphere of fine-scale vortex rings between the wave-particles).  Dirac regarded electric 
potential and velocity field as “physically real”. Maxwell’s operational ether required that its electromagnetic stress-
tensor was zero, and it was overtaken as a concept by Lorentz’s ether, in the early days of relativity,  which was 
defined in terms of motion (SR – not the accelerations of the GT) and not by the “real” existence of  Maxwellian 
ether-stresses.  In the Maxwellian ether, magentism was due to inner rotations of space; in Einstein’s space-time 
(GR) rotations were replaced by geodisic movements in curved space, with the gravitational part of the stress-energy 
tensor being zero.  A minority of physicists continued to develop the Maxwellian approach.  The vortex-sponge 
might effect a reconciliation of these several approaches (Maxwell, Lorentz, Einstein). De Haas accepts that GR 
allows for an operational ether, though Einstein never incorporated ED or QM into GR The operational ether of 
Dirac, though a “real, physical ether” with charge flow velocity being an ether velocity, is not a substantial ether 
fixed to absolute space.  It must be distinguished from an “Aristotelian substance connected to Euclidean, absolute 
space” – which is the obsolete ether concept of  so many anti-relativity, anti-Einstein “dissidents” who advocate it to 
the detriment of ether theory in general. De Haas identifies the problem central to modern Dirac ether as being 
formulation of the stress-energy tensor. Maxwell interpreted magnetic stress as arising from rotation in the ether, but 
Einstein-Minkwoski flat space time (SR) and the curved space-time of GR contain no rotations by definition, and 
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their spaces and time are orthogonal. Dirac’s ether can contain non-orthogonalities in space and time, as required by 
Maxwellian EM, by using an antisymmetric tensor or 6-vector following a path indicated by Minkowski. 
Developing a 6-vector Lorentz Transformation matrix yields a 6-d electromagnetic space-time additional to 4-d 
Einstein-Minkowski space-time. De Haas points out that Dirac explored a Poincare-Lorentz programme (spherical 
electron held together with ether pressure), and an Einstein-Minkowski programme (point charge without extension; 
no ether pressure; an ether free metric) before cultivating the neo-Maxwellian ether of his later years. Referring to 
von Laue’ work unifying Newtonian mechanics with SR (1911) and Minkowski’s work of fusing Maxwell’s ED 
and SR (1908), De Haas presents his own development of a Dirac ether which all contemporary ether theorists 
should consider.     

Another promising line of development is indicated by S Bell, who quantizes general relativity using QED in an 
analysis which (like that of Carroll) draws on techniques from information science, computing, systems processing 
and signal analysis.  She shows how inverse square law of force, and Bohr’s quantization of angular momentum can 
be derived from vortex theory and SR. Though she does not use the ether concept, this work, together with that of 
Carroll and Rowlands, shows how theories of the physical vacuum (or ether) might be greatly extended and 
unification achieved.  

Cavalleri, Puthoff, Winterberg and Surdin have developed comprehensive theories of the physical vacuum, 
based on ther zero point field, and related them to large and small scale phenomena. Cavalleri’s and Winterberg’s 
work has been summarized above.  Surdin assumes that all the laws of physics originate in the ZPF and he sought 
the cosmology which best suited stochastic electrodynamics. Early SED used steady-state cosmology and was 
criticised because it could not explain 2.7K background radiation. Surdin’s ambitious programme sought to use a 
classical model of the physical world, to show that quantum phenomena are a consequence of SED, to obtain a 
cosmology compatible with the large numbers hypothesis, to relate gravitational and EM forces, and to explain 
cosmic background radiation and other cosmological effects. Surdin employs Newtonian Mechanics to derive the 
well-known GR effects of gravitational redshift, perihelion advance, and bending of light by massive bodies.  He 
takes the same quasi-classical, Lorentzian approach found in Ives, Builder, Prokhovnik and Clube. In his later work, 
Surdin attempts to unify GR with SED and develops a steady-state cosmology with an expanding closed universe, 
with matter density constant. He proposes a mechanism for particle creation. He argues that the existence of a real 
zero point field or ether overcomes objections levelled against standard steady-state theory because it accounts for 
cosmic background radiation and continuous creation of matter. Surdin provides an example of a comprehensive 
theory, encompassing cosmology, GR, particle creation, electrodynamics and microphenomena. Puthoff is another 
example of a theorist who treats the zero point field as a dynamic ether in which gravity is an induced effect caused 
by the field being loaded by large scale ponderable matter. These theories based on the ether as zero point field or 
physical vacuum take the ether concept beyond the point reached by Lorentz, Ives, Builder and Prokhovnik by 
giving it a dynamical character. There are considerable differences between the various comprehensive theories and 
more effort should be directed to synthesising a unified theory from them.  The Poincare-Lorentz programme is the 
foundation of most of these theories. 
 
Ether & Matter 
The role of material particles, their structure, and the mechanism of particle creation are vital elements in 
comprehensive ether theories, granted that fundamental particles provide the ultimate combined-rod-and-clock 
systems for surveying space-time. The wave-particle in Hartley’s vortex-sponge has already been mentioned.  
Similar wave particles are suggested by Podlaha who models ponderable matter as being made up of spherical 
standing waves, sent out from a centre, reflected at an envelope, and returned simultaneously to centre. This can be 
treated as an “idealized interferometer” and used to set up a Poincare-Lorentz interpretation of SR and GR. Podlaha 
postulates the existence of matter waves of another kind, which spread with the velocity of light and are essential for 
particle stability, possibly playing the same role as the vortex-ring atmosphere in the vortex-sponge which holds the 
wave-particle together by ether pressure. Jennison’s theories of material particles is based on theoretical and 
experimental work at Canterbury, where he created a fundamental particle serving as a combined rod-and-clock 
system. Jennison does not specifically mention the ether, and he accepts the geometrical formulations of relativity 
which offend some classically minded supporters of the Poincare-Lorentz programme. Jennison studied perfectly 
lossless entrapment of monochromatic radiation in confined spaces, termed “phase-locked cavities” which obey 
Newton’s first and second laws; exhibit quantized momentum at microscopic level; and are fit to serve as proper 
rods and clocks. Jennison stresses the need to identify the rods and clocks which are the best instruments (and 
methods) for calibrating the space-time metric. Jennison and others argue that phase-locked cavities fulfill this role. 
Mackinnon applied phase-locking modelling to de Broglie matter-waves and devised the ‘soliton’ with waves 
phase-locked at the centre. Jennison devised a rotating matter wave particle, and derived a stable three dimensional 
system to serve as a combined proper clock and relativistically rigid measuring rod (in which velocity of sound is the 
speed of light). These instruments are used to calibrate the space-time metric. Clock time is “very real” and “cannot 
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be assumed to exist where matter itself cannot exist” – such as in an environment where there is entirely free 
radiation without rest mass.  Electrons and protons can be used as clocks. Pair production can produce proper clocks 
whose proper time starts from the moment of formation. Fundamental questions are raised concerning the 
meaningfulness of time and space measure beyond the province of the best available rod and clock – such as within 
the minimum measurable intervals of the vortex sponge. Jennison explains how to construct macroscopic measuring 
rods and clocks using laser light and microwave radiation, for practical experimental investigations. Other important 
discussions of the nature of fundamental roda and clocks are given by Kostro and Prokhovnik. Kostro’s papers on 
the three-wave hypothesis, and the soliton, are important discussions on the inter-relation between ultimate particles, 
particle creation, and the nature of fundamental “best” rods and clocks. Simon has considered the role of the electron 
in this role, within the context of Eddington’s analysis of GR and QM. Eddington regarded a particle as a conceptual 
carrier of measurable properties subject to probability in space-time. He considered replacing the physical reference 
system of objects by an ideal standardized reference object which was “a fluid, permeating all space like an ether” 
This was defined mathematically, in non-classical terms. These are a few examples of studies of how reference 
particles are defined, and how postulated mechanisms of particle creation are related to particular theories of ether, 
ZPF or physical vacuum. 
  
Present Situation for Modern Ether Theory 
Modern ether theory is relativistic in that the measuring operations which it defines are described by the accepted 
formal structure of Relativity. Any departure from Relativity theory is beyond experimental detection by current 
techniques, though the Sagnac experiment continues to raise questions which require answers. The supposed 
detections of ether drift will require confirmation by multiple, independent findings by disinterested parties before 
they are accepted.    Most ether theories are practically identical to Einstein’s Relativity. Most modern ether theory is 
couched in non-classical terms, and multi-dimensional spaces and times, though much of it can be given a “quasi-
classical” interpretation as has been acknowledged by leading relativists (Eddington) since 1920. The ether is an 
abstract construct, a “disclosing model”, for facilitating the classification and analysis of observations. Its use is 
justified by its ability to solve problems efficiently, checked by experiment. It is ontologically non-Realistic: it is a 
provisional instrument which must evolve and undergoe be transformations to take into account new discoveries 
which require a complete revolution in what constitutes an ether. Ether theory is not anti-relativity, nor anti-Einstein’s 
relativity.  This must be clearly established or the concept will be rejected. Destructive misconceptions are spread by 
naïve Realists who argue that a classical ether, within the Poincare-Lorentz programme, is more rooted in objective 
reality, because it employs Newtonian 3-d space and absolute time. This is a totally unjustified assumption. A 
classical, Newtonian ether is as much an imaginary construct of the mathematicians as is a superstring or brane. 
Polemicists have used the classical ether concept to support an absolutist metaphysic for religious reasons (Hazelett 
and Turner), whilst condemning Einstein’s relativity as the source of subversive irrationalism.  This unjustified 
misuse of the ether concept is the result of bad history, bad philosophy and bad science. It delays acceptance of the 
ether concept by the community of Science, and causes many modern ether theorists to use alternative expressions, 
such as “vacuum field”, “physical vacuum” or “cosmological plenum” rather than the obvious term. Redundant 
concepts of ether must be set aside, and the futile ether-versus-relativity polemic ended. Ether theorists should 
concentrate much more on bringing order to the range of present day theories, with a view to integrating them into a 
comprehensive whole.  Leaving a disarray of scattered, isolated fragmented theories will not serve. Re-inventing 
Ives and Lorentz in different guises will not do.  Modern ether theory must do more than show that it can interpret 
General Relativity and Cosmology, as geometrized physics has done – this is merely the basic qualification for being 
taken seriously. This had to be done because it was perceived that relativity made the ether concept untenable. It has 
been done, and must be followed by an integrated ether interpretation of the full range of major physical theories, 
from which new and creative insights can be obtained.    
 
Future Developments in Ether Theory? 
Modern ether theory has given rise to several promising development programmes which break new ground.  The 
following indicate trends which promise to take ether theories into a new phase.. Ether can be treated as a seat of 
symmetry breaking mechanisms.  Vortex theory is finding a key role in symmetry breaking analysis, and in creating 
new analogues of general realtivity, some of them derived from the vortex-sponge, or from studies of superfluid 
helium and turbulent superfluids (Pismen, Voklovik). 

Mathematical formulations of ether have always been important (Clifford, Eddington, Maclaren) and today one 
finds interesting concepts of ether as a “generator” of mathematical systems: hypercomplex numbers, dynamic 
algebras, and tesselated spaces.(Trell, Kassendrov, Santilli). These mathematical ethers are often the result of 
techniques borrowed from communications theory, information science, fractals, or chaos theory. 

Ether as the physical vacuum is a vital area of growth. The earlier ether theories postulating mechanisms for 
“creation out of nothing” or out of the vacuum or ZPF, have been joined (for example) by neo-quaternion theory, 
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and nilpotent theory (P Rowlands) Dr Rowlands (Liverpool) has developed an interpretation of the physical vacuum 
which emerges as a mathematical property of the Dirac nilpotent operator, and for any individual fermion, the 
vacuum represents the rest of the universe. Three vacuum operators leave this original operator unchanged. These 
correspond to the vacuum mediated by weak, strong and electric charges. The fermion state vector expressed as a 
four-component spinor specifies the fermion and its three vacuum “reflections”. These partitions of the vacuum are 
discrete, but the combined “gravitational” or “total vacuum” is not. His vacuum is the carrier of nonlocality because 
it directly expresses Pauli exclusion. The continuous vacuum is connected with irreversible time, the Higgs 
mechanism, renormalization, zero-point energy, the Casimir effect and thermodynamics. The crossover between 
discrete nilpotent and continuous vacuum emerges as inertia, and if treated as a “gravity plus inertia (nilpotent) 
theory”, GTR avoids singularities, nonlinearity and non-renormalizability. It can be quantized and yields accelerating 
cosmological redshift and background radiation.  The nilpotent operator incorporates proper time, and hence 
causality, whereas Einstein’s theory excludes it as a separate parameter and defines the space-time scalar product as 
an invariant.  In the restricted cases Einstein considered, with causality introduced ad hoc, quantum and the vacuum 
can be avoided and left undiscussed. This is a limited instance, which requires an artificial concept of simultaneity, 
unknown in a quantum context, which leads to the many difficulties (conceptual and methodological) which adverse 
critics associate with STR.  Rowlands argues that these disappear in all physically realistic cases. An examination of 
the proper times shows that the “twin paradox” involves an asymmetry which makes the apparent simultaneity the 
result of first order approximation. Dr Rowlands argues that the exclusion of proper time from STR allows the 
absolute frame and absolute time to be ignored in the theory’s fields of application, though these are required outside 
the immediate confines of the theory to preserve Einstein’s concept of causality. This suggests that there must 
therefore be some form of absolute frame of reference, as well as “absolute birthordering of all quantum events”. 
Advocates of ether theory should heed Rowland’s warning that it is an entirely different question whether or not this 
absolute frame and vacuum, which is quantum rather than classical in origin, can be derived from the Poincare-
Lorentz version of the ether. He concludes that though Poincare, Lorentz, Lodge and Larmor define the boundaries 
of STR, the full quantum theory of the Dirac state, which goes far beyond the supposed 4-dimensionality of space 
and time, takes physics to an order of understanding which lies beyond the confines of the Poincare-Lorentz-
Einstein-Minkowski dispute.  

The information theoretical aspects of the physical vacuum (ether) and matter is receiving much attention. 
Information science, computer science, systems processing, and signal analysis are being used to interpret the 
physical vacuum. Non-classical, geometrized ether theories, generating new mathematical interpretations are 
developing out of the dynamical interpretations (vortex sponge) and the GMD equivalents. Communications signal 
theory was always fundamental to dynamical ether theory, and played a central role in the mechanism of wave-
particle creation postulated by Hartley and Jennison.  Recent work by S Bell, and J Carroll, show how vortex theory, 
and communications signal theory reveal the hidden mechanisms which determine particle structures, particle 
stability, and the appropriate space-time metric. This “correlation technique” provides a method for developing the 
vortex-sponge from a “large-scale; long-time period” model, to one which interprets the short-period, small-scale 
phenomena which become manifest at the “minimum measurable intervals” scale. Wave particle dynamics is then 
unstable and three spatial dimensions are no longer adequate for interpretations. The ether is then a correllating 
mechanism, linking Relativity, and Quantum Mechanics Its activity finds expression in Clifford algebra, dynamic 
algebras, nilpotent theories, and space-time vortices. The work of J E Carroll represents current work in this field, 
though he does not use the word “ether” to identify the physical vacuum. He develops correlation theory to relate 
special relativity, Clifford algebra and quantum theory, splitting scalar signals into even and odd to give sense of 
direction in space and time co-ordinates. Scalar signals “hide” structures which find expression in multivectors, 
geometries of different orders, and Clifford algebra. The correlation technique (hailed by some as heralding a 
revolution in the way physics is defined and understood) gives rise to models of space-time which include 
orthogonal vectors, spinors, differences in chirality. Three dimensions at least are required for an observable isotropic 
space. The fourth dimension cannot be equivalent to one of these 3 dimensions of isotropic space and the natural 
metric for a 4-d space is that of special relativity in space-time, following Einstein and Minkowski. Note how the 
analysis establishes the Lorentzian programme of ether, particles as configurations in ether, and operations with rods 
and clocks, as the other face of geometrized special relativity. The route from signals in ether to the Eisntein-
Minkowski metric is direct, and of course, one can reverse the derivation. Once more the invalid claims of the anti-
Einstein polemical ether theorists stand revealed. The correlation technique can be developed by embedding (3+1) 
space time in 6-d space time to gain insight into the issues governing observations where signals are randomly 
fluctuating. It is interesting that correlation technique, and Clifford algebra, applied in the technology of image 
processing, now finds application in interpreting gravitation, relativity and quantum theory. Correlation analysis of 4-
d space-time shows that a +ve metric leads to contradictions, but the relativity metric gives sensible results. Mermin 
shows that reliable, meaningful observations are the outcome of correlations, and that correlations in space-time 
cannot exist between two objects moving at speeds greater than that of light. Any modern ether theorist should pay 



86 

great attention to correlation theory which relates the physical theories (signals in physical vacuum, observations, 
wave-particle structure) to geometrized formulations and mathematical expositions. 
 
Conclusion 
The above developments favour the vortex-sponge ether analogue, which is a quantum-mechanical entity, and 
which requires orders of space-time in excess of 4-d on the microscale and for fullest exposition.  It is only for certain 
interpretations that a 4-d expression will suffice.  Several promising lines of development for modern ether theory are 
evident. The sterile ether-versus-relativity polemic must be set aside before anything positive can be accomplished.  
Next, a greater degree of unification must be sought within the comprehensive theories which interpet relativity 
(Special and General), effects of physical vacuum, cosmology, space-time metric and Quantum Mechanics. 
Providing an equivalent and alternative “second interpetation” to the formal structure of General Relativity, already 
provided by the “Einstein school” isn’t enough to justify ether theory. Ether theorists must show that the concept 
points towards creative theories in the future. A start can be made by accepting both the Einstein-Minkowski and the 
Poincare-Lorentz programmes as valid. The geometrized vortex-sponge is equivalent to the space-time continuum 
of GR. When a very small scale perspective is taken, the vortex-sponge becomes the foam-like “punctured, 
fluctuating” continuum of GMD, requiring multi-dimensional geometrical interpretations. Treating the ether as a 
generator of mathematical decriptions (or first interpretations) seems particularly promising (Rowlands, Santilli, 
Trell). Much could be done by analysing the ether in terms of information science and signal theory, following the 
example of Carroll’s correlation technique. The rapidly growing studies of chaotic media, fractals, and symmetry-
breaking mechanisms suggest what the ether is in the 21

st
 C. It is an increasingly important class of unifying 

disclosing models, and associated theories, usually presented in non-Euclidean, multi-dimensional terms, which 
contains a quasi-classical “Newtonian sub-group” which can be identified with the Poincare-Lorentz programme, 
the Ives group of theories and the Lorentzian ether. It is a “scale-dependent” model. Large-scale, long-(clock)-time 
observations can be correlated with a simpler geometry than much smaller-scale measurements. The purely 
mathematical formalisms (first interpretations) generated by the ether require more study. They may closely 
resemble the dynamic algebras, and the nilpotent expositions of contemporary theories (Kassandrov; Rowlands). 
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The paper addresses one of nontrivial octonion related facts. According to paper gr-qc/0409095, the most 

stable space-time state is the one described by real Dirac matrices in 11-dimensional space of signature 

1( ) &10( )− + . The internal subspace is 7-dimensional, and its stability is due to a high “zero” energy 

packing density when using an oblique-angled basis from fundamental vectors of lattice 8E  for the spinor 

degrees of freedom. The nontrivial fact consists in the following: Dirac symbols with octonion matrix 

elements can be used to describe states of the space of internal degrees of freedom if and only if the space 

corresponds either to stable vacuum states or states close to the just mentioned ones. The coincidence of the 

internal space dimension and signature for absolutely different and independent approaches to the 

consideration of this issue seems to predetermine the internal space vacuum properties and the apparatus, 

which is able to constitute the basis of the unified interaction theory. 

 

1. Introduction 
4-dimensional Riemannian space with metric tensor gαβ  is considered. The Greek letters take on 

values , ,... 0,1,2,3α β = . The metric tensor is assumed nonsingular, so Dirac symbols (DS) αγ  

according to 

2gα β β α αβγ γ γ γ+ =               (1) 

can be introduced at every point. This paper considers algebraic properties of DS at some spatial 

point. The coordinate system is assumed to be locally Cartesian and tensor  gαβ  equal to 

( )diag 1,1,1,1gαβ = − .             (2) 

In the DS theory there are a number of problems, the solution to which directly affects the 

physical interpretation of DS involving constructions, however, such that there is no complete 

understanding in regard to their solution method. Mention two of them. 

It is well known that symbols { }αγ  can be realized as Dirac matrices (DM) above any number 

field (real, complex, quaternion numbers) as well as above the octonion body. The realization in the 

form of square matrices 4 4×  is meant. On the other hand, DS can be realized in the form of real 

square matrices N N× , 4N ≥ . Of interest is the question: What is the relation between these two 

realization types? In particular, what are the characteristics of the subspaces of internal degrees of 

freedom that are introduced additionally in each complication of the number body used?  

For physics, the octonion realization is of a special interest, in particular, for the reason that 

using any number body except for the octonion one does not allow us even to pose the question of 

explanation of the irreversibility of actual processes on the basis of time-reversible fundamental 

laws. The irreversibility phenomenon may be explained only in transition to the formulation of the 

physical laws in terms of octonions. But in this most interesting case some of the theorems do not 

hold, on the basis of which the polarization density matrix is introduced and conclusions on the 

correspondence between tensors and bispinors are reached. The problem is to give an answer to the 

question: To what extent are those results for the correspondence between tensors and bispinors, 

which have been found for real matrix realizations of DM, valid for the octonion DM?   

This paper makes an attempt to give answers to the two above-formulated problems. 

 

2. DM realization above a real field in Riemannian spaces of a dimension higher 

than four 
The Riemannian spaces of dimension 4n ≥  have been studied in connection with construction of 

matrix spaces (MS), that is the Riemannian spaces, in which the internal degrees of freedom 
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properties are introduced through Dirac matrices Aγ . Subscripts , ,...A B  take on values 

, 1, 2,...,A B n= , while the Aγ ’s themselves are realized as square matrices N N×  and satisfy 

relations 

2A B B A ABg Eγ γ γ γ+ = ⋅              (3) 

Here E  is the unit matrix in the space of internal degrees of freedom. 

The internal degrees of freedom are related, first, with transformations 
1( ) ( )A A AS x S xγ γ γ −′→ = ,            (4) 

and, second, with the transition to Riemannian spaces of larger dimensions and different signatures.  

The MS theory in multidimensional Riemannian spaces with real realizations of DM is 

discussed in detail in refs. [1]-[3]. These papers also prove the following:  

The realization of DM above a real field frequently entails the notion of so-called maximum 

MS, in which the set of the quantities, the generatrices for which are DM, coincides with the set of 

all matrices of a given dimension. The maximum MS have odd dimension n .  

     2 1n k= + , 

where k  is a positive integer. Their signature is therewith of form ( 1)( ) & ( )k k+ + −  or differs from 

that by a number of “minuses”, which is a multiple of four. 

The DM, which can be introduced in the Riemannian space possessing the above properties are 

square matrices N N× , with N  relating to k  as 

     2kN = . 

In any MS, either anti-Hermitizing matrix D  or Hermitizing matrix C  can be introduced. The 

D  or C  are determined as 

     1 1; ; 0,1,2,..., 1a a a aD D C C a Nγ γ γ γ− + − += − = = − . 

The matrix D  or matrix C  can be used to introduce a Hermitean matrix set, whose existence, in 

its turn, is needed to introduce the concept of polarization density matrix.  

 

3. Complex numbers and quaternions 
The results relating to determination of properties of those multidimensional Riemannian spaces, in 

which the real DM algebra is mapped isomorphously to the DM algebra in 4-dimensional space of 

signature ( )− + + +  in realization of the latter above the real, complex and quaternionic fields are 

summarized in Table 1. 

 

Table 1. Parameters characterizing the isomorphism between DM realized above different number 

fields and DM realized above the real number field 

 

A method for satisfaction of determining relation 2gα β β α αβγ γ γ γ+ =  with 0,1,2,3α =  and 

signature ( )− + + +  

With the help of real matrices With the help of matrices 4 4× , 

but using different number bodies 

Matrices 4 4× . 

16 parameters. 

Real number field 

Subset of matrices ( ) ( )4 4 2 2× ⊗ × . 

32 parameters. 

In this realization method, an additional internal subspace of 

dimension 1 is actually introduced. 

Gauge group (1)U  

Complex field. 

The transition to the matrix notation 

is performed using isomorphism 

 4 4 2E iσ×Ι ⇔ ⊗  
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Subset of matrices ( ) ( )4 4 4 4× ⊗ × . 

64 parameters. 

In this realization method, an additional internal subspace of 

dimension 3 is actually introduced. 

Gauge group (2)SU  

Quaternion field. 

The transition to the matrix notation 

is performed using isomorphism 

 

 

1 4 4 2 1

2 4 4 2

3 4 4 2 3

E i

E i

E i

ρ σ

σ

ρ σ

×

×

×

Ι ⇔ ⊗ 


Ι ⇔ ⊗ 
Ι ⇔ ⊗ 

 

 

As it follows from Table 1, the dimension of the internal space that appears in the transition 

from one number field to another is the same as the number of imaginary units in the number field. 

The Riemannian spaces are therewith subspaces of maximum MS. 

 

4. Octonion DS 
Irrespective of the fact that octonions are discussed extensively in the literature (see, e.g., [4], [5]), 

nevertheless, here we present some information about these unusual numbers. Naturally, we will do 

this briefly and only to the extent, which is needed for the consistency of the discussion.  

The algebra of octonion imaginary units { }Ne  is determined as 

0M N MN MNK Ke e e C eδ= − +              (5) 

Here: , , 1, 2,...,7M N K = ; MNKC  are quantities completely antisymmetric in their indices; 

nonzero components are: 

 123 145 246 347 176 257 365 1C C C C C C C= = = = = = = .       (6) 

Quantity [ ], ,A B C∆ is called the associator of three octonions , ,A B C : 

 [ ] ( ) ( ){ }1
, ,

2
A B C AB C A BC∆ = − .          (7) 

The whole specificity of the octonion algebra against the matrix algebra is that the associators 

(7) are nonzero. 

Perform the linear real transformation of symbols Me  of the following form: 

 
0 0 0

M M MN Ne e G e

e e e

′→ = ⋅ 
′→ = 

.             (8) 

Consider properties of tensor MNG  in the 7-dimensional Euclidean space, in which the base 

vectors are symbols Me . The substitution of Me′  into 

 0M N MN MNK Ke e e C eδ′ ′ ′= − + ,            (9) 

which symbols Me′  should satisfy, leads to the following two relations: 

 
MK NK MN

MA NB ABC MNS SC

G G

G G C C G

δ= 


= 
.            (10) 

Quantities MNG  produce 14-parametric group 2G  of rank 2. According to the universally 

adopted classification, group 2G  is attributed to the exceptional Lie group category. Detailed 

information about the group 2G  can be found, e.g., in ref. [6].  

It is known in advance that in the case of DS realization above the octonion body any 

isomorphous mapping of the appearing DS apparatus to the matrix apparatus cannot exist in 

principle. So the question is quite appropriate: Do the matrix realizations of DS have any bearing on 

the octonion DS whatsoever?  

To answer this question, make it our aim to construct the DS realization in the form of real DM 

in a multidimensional Riemannian space, which would satisfy the following requirement:  
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When in algebraic operations with octonion DS ABCC  play actually no role, the algebraic 

operations should map to the algebra of real DM of an appropriate dimension. This is true for 

the algebraic operations with DS { }αγ  near real DM { }αγ .  

To meet this requirement, suppose that in the scheme under discussion there is the smallness 

parameter 0 1λ< << , such that all matrix elements ( )α αγ γ−  modulo are of the order of λ . Write 

the matrices  αγ  as 

 ( );0 0 ; ; 1,2,...,7N Nf e f e Nα α α αγ γ= + ⋅ + ⋅ =         (11) 

Matrices (11) will satisfy relation (1), if small matrices { };0 ;, Nf fα α  are of the form 

 [ ] [ ];0 0 ;, ; ,N Nf s f sα α α αγ γ
− −

= = ,          (12) 

where { }0 , Ns s are arbitrary small real matrices 4 4× . Upon substitution of (12) into (11) it turns out 

that octonion DS are written in the form 

 [ ] [ ]0 0, ,N Ns e s eα α α αγ γ γ γ
− −

= + ⋅ + ⋅ .          (13) 

The substitution of (13) into (1) shows that in the first smallness order the ABCC  drop out and 

play no role. This means that the algebra with generatrices satisfying relation  

 [ ] 0, 2M N MNe e eδ
+
= − ,             (14) 

 [ ], 2M N MNK Ke e C e
−
= ,             (15) 

can be mapped in the first order of smallness to the algebra of real DM, in which instead of seven 

imaginary units { }Ne , seven matrix imaginary units { }NΙ  are used. The specific form of the real 

DM satisfying either above-formulated requirement can be as follows: 

1 1 4 4 2 1 1 2 2 4 4 2 1 3 3 4 4 2 3 1

4 4 4 4 1 2 3 5 5 4 4 2 3 6 6 4 4 3 2 3

7 7 4 4 4 4 2.

e E i e E i e E i

e E i e E i e E i

e E E i

ρ σ σ σ σ ρ σ σ

ρ σ σ ρ σ ρ σ σ

σ

× × ×

× × ×

× ×

⇔ Ι = ⊗ ⊗ ⇔ Ι = ⊗ ⊗ ⇔ Ι = ⊗ ⊗ 


⇔ Ι = ⊗ ⊗ ⇔ Ι = ⊗ ⊗ ⇔ Ι = ⊗ ⊗ 
⇔ Ι = ⊗ ⊗ 

 (16) 

The resultant multidimensional Riemannian space has dimension 11 and signature 1( ) &10( )− + . 

The DM in the space is written as: 

 

0 2 1 4 4 2 2

1 1 4 4 2 2 2 2 2 4 4 2 2 3 3 4 4 2 2

4 2 3 2 1 1 5 2 3 2 1 6 2 3 2 3 1

7 2 3 1 2 3 8 2 3 2 3 9 2 3 3 2 3

10 2 3 4 4 2

;

; ; ;

; ; ;

; ; ;

.

i E E

E E E E E E

i i i i i i

i i i i i i

i E i

γ ρ σ

γ ρ γ ρ σ γ ρ

γ ρ σ ρ σ σ γ ρ σ σ σ γ ρ σ ρ σ σ

γ ρ σ ρ σ σ γ ρ σ ρ σ γ ρ σ ρ σ σ

γ ρ σ σ

× ×

× × × × × ×

×

= − ⊗ ⊗ 
= ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗ 

= ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗ 
= ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗

= ⊗ ⊗ 



 (17) 

Expressions (13) have the meaning of the ones in the first order of smallness for the first four 

DM among eleven DM. The expressions for all the eleven DM in the first order of smallness are 

derived from  

 [ ] [ ]3 3 3, ; , ; 1,2,...,7N N Ns s Nα α αγ γ γ γ γ γ+ + +− −
= + = + = ,   (18) 

where 

 0 N Ns s E s= ⋅ + ⋅ Ι .             (19) 

Thus, in the linear approximation the octonion DM αγ  can be treated as ordinary matrices, if for 

the basic matrices, in the vicinity of which the expansion proceeds, real DM are used in 11-

dimensional Riemannian space of signature 1( ) &10( )− + . Pay attention to the fact that except for 

the reality no other properties of DM in 11-dimensional Riemannian space have been used in this 

consideration. This means that instead of system (17) that DM system can be used in the 

consideration, which has been derived in [7] from system (17) through transition to the oblique-

angled basis produced by simple root vectors of Lie algebra 8E . 
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In the general case the following rule remains valid: If it was possible to realize DS with the 

help of octonion DM 4 4× , then after that one can transfer from one realization to another using 

transformations 2G .  

 

5. Discussion 
Although the octonion DS can be written in the form of matrices 4 4×  in the general case, but the 

algebra of the matrices possesses no associativity and, hence, cannot be mapped to the algebra of 

ordinary real matrices in a multidimensional space.  In the linear approximation, however, the 

algebra of octonion DM is mapped to that of real DM in 11-dimensional Riemannian space of 

signature 1( ) &10( )− + . One of possible DM systems in this space is of form (17).  

The result obtained is of interest for several reasons. 

Reason 1 is that the correspondence found by us between octonion DS and real DM in a 

multidimensional Riemannian space leads to the Riemannian space, in which the most stable 

vacuum state appears. Ref. [7] shows that the most stable vacuum state both among the internal 

subspaces of dimensions other than 7 and among DM of different spinor basis structure is the DM 

realization in the form of real matrices, in which the oblique-angled basis from the set of 

fundamental vectors of lattice 8E  is used. In this realization, the internal space dimension is 7; the 

specific form of the lattice DM is presented in ref. [7] and the matrix of transition from the 

orthonormal basis to the lattice one is given, e.g., in [7], [8].  

Reason 2 is that using any number body, except for the octonion body, in physical theories does 

not allow us even to pose the question of explanation of the irreversibility of actual processes on the 

basis of time-reversible fundamental laws with writing the latter in terms of any number field. The 

irreversibility phenomenon may be explained only in transition to the formulation of the physical 

laws in terms of octonions.  

In this connection note that it has been long since the physicists have paid attention to the 

existence of an evident contradiction: on the one hand, the dynamic equations describing 

fundamental interactions possess time reversibility; on the other hand, actual processes that occur in 

the Nature are irreversible. R. Penrose in [9] writes: “...It is hard to understand how our immense 

Universe could “sink” into one or another of the states with being unable to even imagine in what 

time direction to start! ...the only explanation ... remains: not all accurate physics laws are 

symmetric in time!...”.  

If DM are realized above the octonion body, then the transition amplitudes automatically cease 

to be associative. While this just means that the reversibility in time does disappear at the level of 

fundamental processes in the microworld. In fact, if 1 2 3, , ,...A A A  are amplitudes of the transitions 

from initial state 0t  to states arising at times 1 2 3,..., ,t t t , then the amplitude for one of the paths of the 

process proceeding in the time-forward direction should be found according to rule 

 ( )( )1 2 3 ...A A A⋅ ⋅ ,              (20) 

while the conjugate amplitude for the process running in the time-backward direction should be 

found according to rule 

 ( )( )1 2 3...A A A⋅ ⋅ .               (21) 

At the level of real, complex and quaternionic numbers expressions (20), (21) lead to the same 

probabilities of transitions. But as soon as octonions come into use, the equality between 

expressions (20), (21), generally speaking, disappears. Moreover, the body of octonion numbers is 

the only one possessing this property. This means that we may necessarily resort to the octonion 

quantities for explanation of the irreversibility of processes. 

The above considerations and results justify the multiple attempts to consider the octonion wave 

functions for half-integer spin particles. We only point out to refs. [5], [10], [11] as typical papers 

from the standpoint of the method for consideration of octonion Dirac matrices. The method of 

these papers is valid only to the quadratic approximation, as in these papers there is either explicit 

or implicit transition to so-called split octonions (introduction of   the outer imaginary unit 



 

95 

commutating with all octonions) or the octonion composition rule is replaced by the open product. 

Similar (or equivalent) techniques restore the associativity of the modified number body and allow 

the standard matrix apparatus to be employed. However, in so doing a most interesting part of the 

octonion specificity is lost. 

A method for description of the half-integer spin particle dynamics is the method of mapping of 

tensors to bispinors developed in a number of papers (see, e.g., [3]). In the method, one of principal 

objects is bispinor matrix Z . For the octonion implementation of DS, the matrix Z  exists in the 

linear approximation and, as it follows from (13), coincides with 1S − . Through multiplication on the 

right by the projectors, states with different quantum numbers can be separated from the bispinor 

matrix. For example, one of the subgroups of group 2G  is (3)SU . In the general case there is no 

bispinor matrix, however, the results obtained using the methods for consideration of the 

transformations of DM 4 4× , which are suggested in ref. [12], remain valid.  

Thus, the vacuum stability requirement can be made consistent with using the most general 

number body. In so doing any violation of the bounds of the 7-dimensional internal Euclidean space 

will result in vacuum instability (and appearance of tachyons as a consequence). 

 

The work was carried out under partial financial support by the International Science and 

Technology Center (ISTC Project #1655). 
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Nowadays the well-known saying of Pythagoras: Everything is number is usually understood as a 

metaphor, having only a very indirect correlation with the structure of the real world. Pythagoras 

program of reducing that structure to ratios of whole numbers seems naive.  Our modern knowledge 

of the real and complex generalizations of the number concept does not seem to affect this 

conclusion. Nor does Hamilton s great discovery of the generalization of complex numbers, the 

quaternions, appear to offer any prospect of the reduction of the physical to the numerical 

(incidentally Hamilton regarded this discovery as his greatest achievement).  

The reason this beautiful idea cannot be true is often said to be a consequence of Frobenius 

Theorem. This states that those developments of the number concept which preserve the properties 

of the rationals come to an end with the real and complex numbers. Since the quaternions do not 

commute, they are no longer numbers properly speaking. The octonions, discovered shortly after 

the quaternions, seem to be even less convincing candidates for the status of number in the full 

sense, because of the loss of associativity. Special relativity at first sight seemed to renew the hope 

of finding a connection between the geometry of physical space and this most fundamental of 

mathematical concepts. However, neither Minkowski Space nor any of its multidimensional 

generalizations has disclosed any immediate connection with the study of number fields. It is 

probably due to this fact that the basic language of modern relativity theory is tensor analysis, 

which as mathematical machinery is not directly numerical, although the structure of the real and 

complex numbers provides its basis.  

For most physicists the absence of a simple and natural relationship between the objects they 

study (and notably the fundamental geometric structures of space-time) and the structure of number 

fields goes unremarked. Many find it strange that a few of their colleagues would still like to realize 

the dream of Pythagoras and Hamilton. However, when contemplating the desired characteristics of 

the unified Theory about which they sometimes speculate, physicists often claim that it should be 

based on a minimal number of the simplest and most elegant principles, although they are usually 

rather reluctant to say which principles they have in mind.. From a philosophical standpoint, the 

existence of close connections between physical geometry and algebraic or even more strikingly, 

arithmetic structures seems a very natural idea, and one providing a clue to the simplest and most 

beautiful principles lying at the basis of the physical world. At what point is it possible to break into 

this circle of geometric and arithmetic concepts and gain a clearer understanding of the way in 

which they intertwine? Could such an understanding help overcome the obstacles which have 

obstructed the realization of Pythagoras and Hamilton’s vision?  

One such approach has been largely ignored by both physicists and mathematicians. We refer to 

the commutative and associative hypercomplex numbers and the corresponding linear Finsler 

Spaces. Before developing this approach, we take note of the following: besides the very familiar 

examples of correspondences between geometric and arithmetic notions, such as the real line and 

the complex plane, there exists a less obvious example., namely the association of a pseudo-

Euclidean plane and the corresponding dual numbers, sometimes termed the hyperbolically 

complex plane (1).  The main difference between these numbers and their complex analogues is that 

the square of the imaginary unit is equal not to 1 but to +1, which implies that the absolute value of 

a dual number is expressed not by the sum but by the difference of squares, which in its turn 

coincides with the interval, the main invariant of the pseudo-Euclidean plane. 

 

This pairing involves properties every bit as rich as those seen in the case of the pairing 

between the Euclidean plane and the complex numbers.. Addition for dual numbers corresponds to 
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parallel transfer and multiplication corresponds to extensions and boosts, the analogues of rotation 

in space-time. We can also consider analytical functions of dual numbers as conformal 

transformations of the pseudo-Euclidean plane, each having a distinct physical meaning. The lack 

of attention to this fact on the part of physicists can be explained by the lack of the correspondence 

in question in the case of 3 and 4 dimensional pseudo-Euclidean spaces and also by the lack of any 

physical interpretation for the absolute value of a gradient of the scalar potential in the framework 

of Special Relativity. The closest analogue for this geometric object is the 4 velocity (on a plane it 

will be a 2-velocity); but its absolute value should always be equal to unity, whereas in the 

conjectured theory of a hyperbolic complex potential the corresponding value can vary from zero to 

infinity. It seems that Hermann Weyl first came closest to finding a solution to this problem. He 

suggested that each point in space-time should be characterized not only by a metric tensor but also 

by a scalar. However he never proposed any simple or natural physical meaning for this scalar.  

The correspondence between the dual numbers and the pseudo-Euclidean plane should be taken 

just as seriously as the correspondence between the complex numbers and the Euclidean plane or 

between the real numbers and the line. It gives a further reason to ask why it is that there appear to 

be only one 1-dimensional space and two 2 dimensional spaces that have such a natural pairing with 

algebras (actually there is a third 2 dimensional case: the dual numbers which correspond to the 

Galilean plane. Why does no such beautiful correspondence exist for 3 and 4 dimensional spaces? 

Notice the Frobenius theorem no longer blocks such a correspondence, for it says nothing about the 

dual numbers and the corresponding pseudo-Euclidean plane, although the latter is in some respects 

closer to real physical geometry than the 1 dimensional and 2-dimensional Euclidean spaces.  

A property specific to the algebra of dual numbers is that it can be represented as a direct sum 

of 1 dimensional algebras. What about considering a direct sum of 3 and 4 dimensional real 

algebras as a generalization to the multidimensional case? It is easy to see that such algebras exist 

and that they satisfy desirable basic conditions such as commutativity and associativity of 

multiplication. But from the viewpoint of the Frobenius Theorem, such algebras are defective, 

because they have s-called zero divisors or non-invertible elements. The outcome of division by 

such elements, like division by zero, is unspecified. Algebras having more than one element without 

an inverse are usually viewed as defective. Attention is not paid to the fact that division by non-zero 

elements is well specified in such algebras. Besides, in the Special Theory of relativity and on the 

pseudo-Euclidean plane the existence of zero divisors is actually a reflection of basic features of the 

corresponding geometrical space, namely the existence of isotropic directions, or in other words, of 

a light-cone structure.  

There is also another and significantly more important problem. The spaces corresponding to 

the 3 and 4 component generalization of dual numbers are neither Euclidean nor pseudo-Euclidean. 

In fact they are quite unlike any of the spaces normally considered in connection with the 

generalization of algebraic or arithmetic concepts and operations. The chief difference marking 

them out is that the main invariants of such spaces, namely the generalized concepts of distance and 

interval which they admit, appear not to be connected with forms of the power 2, but with forms of 

higher power.  

The field of modern abstract mathematics which deals with such structures is called Finsler 

Geometry. The basic subject matter of Finsler Geometry is the study of curved manifolds and 

metric functions of the most general form. At the basis of the investigation of these structures, 

which turn out to possess a rich meaning in terms of numerical concepts, lie the axioms of linear 

algebra and the metric functions on such spaces are polynomials. These features make these 

geometries and the associated numerical structures quite akin to the Euclidean and pseudo-

Euclidean constructions, but with the distinction that the metric polynomials in the case of the 

Finsler spaces are taken to be nonquadratic. There is no agreed term in the mathematical community 

for the corresponding spaces. We will christen them polylinear spaces.  Today the theory of 

polylinear spaces is just at the beginning of its development (2), although the close connection 

between some of the representative spaces under study and the well-developed theory of 

hypercomplex numbers should be of definite help in understanding at least some of their 

geometrical features.  
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So we have two striking facts: on the one hand, because of the no go consequence of the 

Frobenius Theorem, we cannot expect to find a neat correspondence between the structure of 

numbers and that of the multidimensional spaces studied in physics of a kind that would have 

satisfied Pythagoras. On the other hand, we see that mathematicians and physicists have not yet 

really developed the study of geometries that might turn out to correspond to more or less 

appropriate generalizations of the concept of number. One conclusion could be that we just have to 

live with these facts, and pursue the investigation of physical geometry and numerical structures as 

separate intellectual enterprises. But there is an alternative point of view. In particular there is the 

possible program of trying to construct appropriate mathematical models of physical space not only 

on the basis of Minkowski geometry, but also on the basis of the polylinear Finsler spaces, which 

we have seen ARE associated with numerical structures. At first sight such a mathematical 

framework might seem too abstract to serve as the basis for a physical model. But if we look back a 

hundred years, we see that the classical space-time of Galileo and Newton was considered to be the 

only candidate for the geometry of the physical Universe. So the idea of using some metric different 

from either the pseudo-Euclidean or Riemannian form to describe that geometry seems quite an 

appealing further step, or at any rate not a wholly unnatural one 

There are infinitely many polylinear Finsler spaces. However, if we restrict to 

a)  the 4 dimensional spaces 

b)  the metric form of minimal power 

c)  those spaces connected with commutative and associative number fields 

d)  those which allow us to recover Minkowski space as a limiting case.  

 

Then we find these requirements constrain the construction so effectively that there is only one 

candidate. The space which is thus picked out is a linear Finsler space associated with numbers 

generated by a direct sum of four real algebras and having a metric function named the Berwald-

Moor metric after the two mathematicians who first investigated it. This space is quite unlike the 

usual quadratic spaces in that it has a designated basis consisting of special isotropic vectors. In this 

basis the metric function has the following beautiful and laconic form 

|H| = |П
n

i=1h′i|
1/n

,              (1) 

where |H| generalizes the interval of a vector;  hj are its isotropic components and n is the space 

dimension. As was demonstrated in (2) it is more natural to think of the manifolds associated with 

this metric as Multi-dimensional Times rather than Multi-dimensional Spaces, since any of their 

non isotropic straight lines can be interpreted as the proper time of some inertial reference system. 

The metric function of this 4 dimensional time relates the value of each vector to the fourth root of 

the product of its components. At first glance, it seems there is no parameter with respect to which 

we can perform the transition in the limit either to the Euclidean or the Minkowki space metric. 

However, let us take a closer look at this problem.  

For the sake of simplicity, Minkowski space is usually studied in the 3 or even 2 dimensional 

case. Adopting a similar tactic, let us study the Berwald-Moor metric for n = 3. There is no point in 

considering the case of n = 2, because then the Finsler space is just isomorphic to the pseudo-

Euclidean plane. For the 3 dimenssional time, the Berwald-Moor metric has the form 

|H|
3 

= h1'h2'h3'.               (2) 

Its pseudo-Euclidean analogue is known to be quite different 

|X|
2 

= х1
2
–х2

2
–х3

2
 .              (3) 

Thus it seems improbable that the geometries specified by these metrics could have anything in 

common. However, let us pass from the orthonormal basis in which expression (3) is written to one 

of the isotropic bases () associated with the orthonormal basis by the relations 

e1'=
3

1
(e1+cosφ·e2+sinφ·e3); 
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e2'=
3

1
(e1+cos (φ+120º)e2+sin(φ+120º)·e3);       (4) 

e3' =
3

1
 (e1+cos (φ+240º) ·e2+sin (φ+240º)·e3), 

where φ is an arbitrary parameter. Then the quadratic form (3) becomes absolutely symmetrical: 

|X|
2 

= х1'х2'+х1'х3'+х2'х3'.            (5) 

In this representation, the pseudo-Euclidean metric takes on a resemblance to the Berwald-Moor 

metric function (2) and this clarifies the assertion about the resemblance of the corresponding 

geometries.  

Let us now look at this same assertion from the opposite side and perform a transformation of 

the Berwald-Moor metric (2) from the isotropic basis f1', f2', f3' to the basis which is the Finslerian 

analogue of the orthonormal basis f1, f2, f3. In this case, the new basis can be associated with the 

isotropic one by the following expressions: 

f1 = f1'+f2'+f3'; 

f2 =
2

1
(sinψ·f1'+sin (ψ+120º)f2'+sin(ψ+240º) f3');       (6) 

f3 =
2

1
 (cosψ·f1'+cos (ψ+120º) f2'+cos (ψ+240º)·f3'). 

Here ψ is another arbitrary parameter. Taking the vectors in this basis, the metric function (2) 

becomes 

|H|
3 

= h1
3
–

2

3
h1 (h2

2
+h3

2
) –

2

2
 (sin3ψ·h2

3
–cos3ψ·h3

3
) +

2

23
 (sin3ψ·h2h3

2
–cos3ψ·h2

2
h3),  (7) 

In the limit 

h1 >> h2, h3                  (8) 

which is usual in Special relativity, the expression thus obtained gives 

|H|
3 

≈ h1
3
–

2

3
h1 (h2

2
+h3

2
),     (9) 

to the third infinitesimal order. In its turn, this last expression is equivalent to the ordinary quadratic 

form of the pseudo-Euclidean space to the power of 3/2: 

(|Х|
2
) 

3/2 
= (x1

2
–x2

2
–x3

2
) 

3/2 
= (x1

2
 (1–

2

1

2

3

2

2

х

хх −
)) 

3/2 
≈ x1

3
–

2

3
x1 (x2

2
+x3

2
).   (10) 

Therefore, for h1=x1 >> h2=x2, h3=x3: |H|≈|Х|.  

Thus, two completely different metric forms (2) and (3) demonstrate a close affinity, at least in 

some types of basis.  

However, the observed similarity between the fundamental metric forms of both geometries 

does not give rise to the correspondence principle. To recover this principle, some nontrivial inner 

properties of the symmetry groups of each space have also to be similar. A pseudo-Euclidean space 

of any given dimension possesses a six-parameter group of continuous linear transformations which 

is the analogue of the Poincare Group of ordinary Minkowski spacetime. This six-parameter group 

contains the three-parameter group of translations and the rotation group of the same dimension. In 

the case of the latter group, one parameter is responsible for the spatial rotations, and the other two 

for the boosts. The corresponding group of a three-dimensional time has not six, but five parameters 

and consists of the three-parameter subgroup of translations and the И-parameter subgroup of 

transformations. These transformations are very similar to boosts, the only difference being that, 

unlike boosts, they commute. It might seem however, that the difference in the number of 

independent parameters is crucial: that it deprives us of any hope of recovering the Poincare group 

(or its modified analogue) as the fundamental group of continuous symmetries of the multi-



100 

dimensional spacetime — and that without the Poincare group (and its subgroup, the Lorentz group) 

one cannot envisage recovering the essential structure of current physics.  

Nonetheless, a solution to this problem seems in prospect. Since Finsler spaces, apart from the 

ordinary transformations that leave the interval between points unaffected, also possess other types 

of symmetries (3) which turn out to be fixed. Conformal mappings, which preserve the angles 

between directions, could be regarded as forming a distant analogy for such symmetries in the case 

of spaces with the ordinary quadratic form. However, the analogy in question is incomplete, 

because in the case of Finsler spaces such symmetries are much more varied than in the conformal 

case. In particular, all the nonlinear transformations that alter the ψ parameter in the previous 

formulas to any other real value  ψ′ are fixed for this three-dimensional time. Specifically, these 

transformations are related to the rotations of the three-dimensional pseudo-Euclidean Space around 

the time-like axis. In spite of the fact that the three-dimensional time intervals are not invariant 

under these transformations, the transformations conserve distances in the two-dimensional 

subspace.  

Figure 1 shows surfaces with their points equidistant from two fixed points (labeled T and –T) 

in the cases of a) pseudo-Euclidean space and b) Finsler space in affine coordinates. In the pseudo-

Euclidean case, the points of such a surface are the simultaneous events which take place in an 

inertial reference system represented by the straight line passing through T and –T. In principle, the 

same physical meaning can be assigned to the corresponding surface in the case of three-

dimensional time, only now, instead of a plane, we have a set of points satisfying the relation 

h1'h2'h3'+ (h1'+h2'+h3') T
2 

= 0,              (11) 

which follows from the requirement that the lengths should be equal. Now the events represented 

by this plane cannot be considered simultaneous for every point of the straight line (–T, T) as in the 

pseudo-Euclidean case of Special Relativity. The only point for which they are all simultaneous is 

T. This is the point which must be occupied by an observer if he is to call all the events on the 

surface (11) simultaneous. From the philosophical standpoint, this feature represents the most 

radical difference between the physical consequences of Minkowski and Finsler geometry. Notice 

that the key difference between Special Relativity and classical physics remains the same the 

absolute character of simultaneity is rejected. Instead, in the framework of Special Relativity the 

notion of simultaneity is applicable only to isolated reference systems whose world lines are 

represented by parallel straight lines. In multi-dimensional time, this relativisation of the notion of 

simultaneity of events reaches its logical limit, since now the notion of simultaneity holds not for 

the whole set of parallel straight lines of the space, but only for a single point.  

There are grids on both figures designed to show the planes of relative simultaneity. For the 

observer at point T, the lines of these grids play the role of circular and radial co-ordinates. What is 

important to, note here is that in the near neighbourhood of the centres of the two co-ordinate grids 

(i. e. in the neighbourhood of the point associated with the location of the observer) these co-

ordinate systems almost completely overlap. In practice, this means that, if confined to local 

experiments, an observer will be unable to detect the difference between the metric properties of the 

three-dimensional pseudo-Euclidean space and the multi-dimensional time of the same dimension. 

As for the more essential distinctions, they become apparent closer to the periphery of the plane of 

simultaneity and are maximized on its boundary, which has a circumference 2T in diameter (see Fig 

1 a)) in the pseudo-Euclidean case; while I the case of the three-dimensional time it is a broken 

hexagon ABCDEF (the hexagon consists of fragments of the edges of cubes, and the main diagonal 

of the cube is again equal to 2T (see Fig 1 b)).  

What is unusual here is that in the three-dimensional time all the radial lines of the plane of 

relative simultaneity come together at the three symmetrical opposed vertices of the hexagon 

enclosing the plane. The three remaining vertices behave as centres of repulsion. Therefore, on the 

one dimensional celestial sphere of the two-dimensional physical space of an observer located in a 

Finslerian manifold, there turn out to be six fixed points. In the subjective awareness of the 

observer, three of these six points (namely the ones where the radial lines converge) extend are 

smeared over one third of the horizon each; while all the remaining points of the hexagon ABCDEF 
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are focused at the remaining three points. This is certainly one of the major differences in the 

physical consequences of the two geometries. Notice, however, that it is a difference realized only 

at the periphery of the space visible to the observer and is virtually imperceptible in her close 

vicinity.  

The nonlinear transformations now play the same role as rotations in the three-dimensional 

pseudo-Euclidean space. The plane of relative simultaneity is invariant under such transformations, 

which act so as to transform circular and radial lines into themselves. The linear transformations, 

which use the proper time, also look like boosts of the pseudo-Euclidean space, but it is the 

nonlinear transformations which generate the two-parameter commutative group and transform the 

special cone-like surfaces into themselves. The generators of theses surfaces in this case are the 

radial lines in the planes of relative simultaneity.  

When the Four-dimensional Minkowski space is compared to the space with the Berwald-Moor 

metric having the same dimension, the resulting picture remains much the same. Thus, in the 

symmetric isotropic basis the usual quadratic form 

|X|
2 

= х1
2
–х2

2
–х3

2
–х4

2
            (12) 

becomes 

|X|
2 

= х1'х2'+х1'х3'+х1'х4'+х2'х3'+х2'х4'+х3'х4',       (13) 

which to some extent resembles the basic metric form in the case of four-dimensional time: 

|H|
4 

= h1'h2'h3'h4'.             (14) 

In its turn, this last expression reduces, in the basis analogous to the orthonormal basis, to the 

expression 

|H|
4 

= h1
4
+h2

4
+h3

4
+h4

4
–2 (h1

2
h2

2
+h1

2
h3

2
+h1

2
h4

2
+h2

2
h3

2
+h2

2
h4

2
+h3

2
h4

2
) +8h1h2h3h4,   (15) 

which after simple transformations, takes the form  

|H|
4 

= h1
4
–2 (h2

2
+h3

2
+h4

2
) h1

2
+8 (h2h3h4) h1–2 (h2

2
h3

2
+h2

2
h4

2
+h3

2
h4

2
) +h2

4
+h3

4
+h4

4
.   (16) 

Provided the condition  

h1 >> h2, h3, h4               (17) 

is satisfied, this last expression gives 

|H|
4 

= h1
4
–2 (h2

2
+h3

2
+h4

2
) h1

2
+ (h2

2
+h3

2
+h4

2
) 

2
,      (18) 

within the accuracy of the infinitesimal terms of third and fourth order. Note that this final 

expression is the perfect square of the classical quadratic form in Minkowki space.  

The same holds of the continuous symmetry groups. Unlike the Poincare group that is so well-

known amongst physicists, the group of transformations of the Finsler space under examination 

here has seven rather than ten parameters. Four of these parameters are responsible for parallel 

transfer, the other three are responsible for boosts. If we then add to these transformations the three-

parameter group which leaves invariant the symmetrized t wo-vector form 

((A, B)) =1/2 ((A, A, A, B) /|A|
2
+ (A, B, B, B) /|B|

2
)     (19) 

then it becomes possible, as in the three-dimensional case, to simulate the spatial rotations in 

addition to the translations and boosts. This is so because although the form (19) is not linear in 

each of its vectors, it is nevertheless very close to an ordinary scalar product for all its other 

properties. When these transformations are added, the designate symmetries of the four-dimensional 

time becomes equivalent in practice to the Poincare group of Minkowski space, both qualitatively 

and quantitatively. It is true there is still a certain mathematical difference in the properties of these 

groups but what is important is that both have features which connect them closely with the 

observed symmetries of our physical universe. The question which is more adequate to the task of 

providing a precise and testable description of that physical reality demands further serious 

investigation.  

Notice that the Finsler space under consideration here can be claimed to have one significant 

advantage. Its group of nonlinear symmetries is essentially more extensive than the corresponding 
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group of conformal transformations in Minkowski space. This wider group contains the 

transformations that preserve the form created by the four vectors 

(A, B, C, D) / (|A||B||C||D|).           (20) 

and this expression provides a generalization of the notion of the scalar product of ordinary 

quadratic geometries. 

In addition to the mentioned limiting cases and the similarity of the subgroups of the group of 

symmetries, there is a further important feature that might incline us to consider the Berwald-Moor 

metric rather than that of Mikowski as a candidate for the metric of the space we inhabit. This is the 

essential difference between forward motion and rotary motion in that space, a difference already 

remarked on by Newton. In the case of rectilinear uniform motion, it is impossible to conclude 

unambiguously what really moves the purported moving body or the surrounding Universe. This 

makes the notion of forward speed a relative one. It is much less clear whether the same applies to 

uniform rotary motion. The issue has long been the subject of intensive investigation and debate, 

particularly that focused on the meaning and justification of Mach s principle. No consensus has so 

far been reached.  

The question is seen in a new light if we try to describe physical phenomena using a geometry 

with the Berwald-Moor rather than the Minkowski metric function. The shift in perspective comes 

from the fact that in a multi-dimensional time, the rotations and translations belong to completely 

different types of continuous symmetries.  

Unfortunately there is no simple way to draw a four-dimensional affine space as in Figure 1 b) 

Where we could show the radial lines and equidistant points on the three-dimensional hyperplane of 

simultaneity. One can see that the features of the resultant picture would be the same in principle. 

The radial lines would extend uniformly from the centre, filling the three-dimensional flat space, 

passing gradually beyond the hyperplane into the fourth dimension, reaching the specific 

dodecahedron (which would form the analogue of the hexagon considered in the three-dimensional 

case) and ultimately converge at its four vertices. As for the limiting dodecahedron, it is formed by 

the two intersecting light cones. The vertex of one of these is the observers standpoint, while the 

other is its mirror image with its origin at a point symmetrical to the vertex of the first light cone. 

As a result, the radial lines fill the three-dimensional region, but this is no longer flat, but essentially 

four dimensional. As a result, its boundary has 14 vertices, 24 edges and 12 faces. Figure 2 shows 

the projection of such a dodecahedron on the three-dimensional internal firmament — the observed 

celestial sphere. Different points of this firmament and different directions within it are not of equal 

status. But the difference in their status only becomes apparent at huge astrophysical distances, so 

the problem of detecting such features in the real world is a hard one.  

From the point of view of an observer who resides in such a four-dimensional time, this 

dodecahedron is just the most distant end of the visible universe. Therefore to reveal a discrepancy 

between predicted observations in the two models the one based on the Finsler space and the other 

on Minkowski geometry data from very remote sources has to be compared. To make such 

comparison possible, the data has to arrive from sufficiently separated points. Unfortunately the 

solar system which forms the current limit is far too small in proportion to the visible universe to 

permit such comparison. Therefore, at least for the time being, the direct measurement of angles and 

distances, like Gauss similarly inspired efforts of two centuries ago, is not going to help us decide 

which of the two geometries, Riemannian or Finslerian, better fits the structure of physical space. In 

saying this, however, we do not preclude that other, subtler distinctions between the two geometries 

might provide a basis for choosing between them.  

Such indirect evidence might in particular be supplied by observations of quasars, since these 

are the most remote known objects. It is known that the behaviour of quasars exhibits serious 

anomalies which were not at all anticipated from within the framework of current relativistic 

astrophysics. In attempting to calculate the distances at which quasars lie from the frequency at 

which their luminosity varies, to account for the observed oscillations in luminosity we have either 

to assign incredibly small transversal dimensions to quasars or else conclude that the waves inside 

quasars are propagating at superluminal speeds. Either claim conflicts sharply with our current 
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cosmological understanding. But both can comfortably be accommodated by the hypothesis of the 

Finslerian distortion of the signals being emitted by quasars.  

More direct evidence that the metric of real-world geometry is that of Berwald-Moor is 

provided by investigations of the angular distribution of the temperature fluctuations in the 

cosmological microwave background radiation. It has been claimed that in these, a dodecahedral 

shape for the boundaries of the space of our universe was registered. See Reference (5). In the four 

dimensional time, Finsler space based model discussed above, the boundaries of the space seen by 

the observer are also dodecahedral, only this time the sides of the dodecahedrons are ordinary 

squares rather than pentagons. In addition, because our figure 1 b) is closed in two dimensions, it is 

now embedded in four dimensional rather than three-dimensional space. Still, since the 

observational probes of the cosmological background radiation so far carried out offer no evidence 

as to the shapes of the sides of the dodecahedron, or any other details, it remains disputable which 

of the two kinds of figures described above should be regarded as the preferred candidate.  

When a multi-dimensional time is substituted for Minkowski space, the degrees of freedom of 

the system are essentially increased that is the effect of using the Finslerian generalization of the 

metric tensor rather than the standard Riemannian tensor. In Einstein s theory, the independent 

components of the metric tensor are identified with the gravitational field potentials. However, 

whereas in the case of four-dimensional Riemannian space the metric tensor has 10 independent 

components, in the case of a Finsler Space of the same dimensions, the corresponding tensor has no 

fewer than 35. 

A further argument for considering the Berwald-Moor, as against the quadratic, metric is to be 

found in the images of the fractal Julia sets. These sets are today familiar from the corresponding 

(and strikingly beautiful) computer-generated images in the case of the Euclidean plane, 

corresponding to the complex numbers. But they also have a primitive structure in the higher-

dimensional case, in particular that constructed on the basis of the quaternions. By replacing 

Euclidean space by a higher dimensional time associated with the commutative and associative 

hypercomplex numbers, we likewise obtain three dimensional images notice that these can naturally 

be regarded as snapshots of four-dimensional objects evolving in time.  

So in conclusion: the geometry of four-dimensional time allows interpretations of its structures 

such that these turn out to correspond in a natural way with structures familiar from both classical 

and relativistic physics. Moreover, the adoption of curved Finsler space as a geometrical framework 

for the description of real world structure may make possible a reduction of not only the 

gravitational field, but also the other fundamental fields of physics to pure geometry whilst staying 

within four dimensions, thus, realizing the vision of Einstein and Wheeler. And to the extent that 

this pure geometry can be conceived as itself having a purely numerical basis, we should also have 

fulfilled an even older and compelling vision that of Pythagoras and Hamilton 
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When I talk about reintroducing the ether, I do not mean to go back to the picture of 

the ether that one had in the 19
th

 century, but I do mean to introduce a new picture of 

the ether that will conform to our present ideas of quantum theory. 

P.A.M. Dirac (1963) 

 

At the dawn of quantum physics it was definitely shown that physical vacuum provides for so 

called ‘null oscillations’ being unremovable even at zero temperature limit and related as usually to 

the virtual fluctuations of electromagnetic field. In general quantum field theory it is accepted to 

associate vacuum(s) with variety of lowest energetic states for all kinds of the quantized fields. As 

inevitable consequence of introduction ab initio into Standard Model of hypothetical scalar field we 

get a fundamental concept of the ‘Higgs vacuum’ as a basic vacuum state which is as far as 

necessary for justification of the theory but so much problematical due to permanent lack of the 

Higgs bosons in the current experiment. There are yet more questions to the different exotic vacuum 

states (such as planckian vacuum, grand unification vacuum, inflatons, string vacuum, etc.) to be 

capable to produce ‘spontaneously’ the usual matter. 

In General Relativity (GR) and Astrophysics the realistic vacuum is considered as an 

ubiquitous, weakly gravitating medium which appears to be responsible for the phenomena of ‘dark 

matter and energy’ in the Universe and also for its accelerated expansion discovered in 1998.  

As a whole we get the distinction in energy density between the classical and quantum vacuums 

in more than 50 orders, both (!) in conformity with the corresponding experiments. No comments, 

darlings.  

In context of the staton treatment of gravitation one can see the way out of situation in 

development of adequate approach to realistic, well defined, scalar vacuum [1]. This implies that 

quantum vacuum represents the highly exited bound states of scalar condensate localizing just in 

the domain of interactions of particles. At the same time particles and their composites (‘quarks’ of 

three generations, etc.) should themselves be considered as some special soliton (vortex) states of 

scalar background being in dynamical equilibrium (to be stable for the stable particles) both with 

surrounded quantum and classical vacuums.  

However, properties of quantum vacuum can never be spread to the macroscopic scales (in a 

sense, no interaction – no vacuum to be defined). The only exceptions are the collective anisotropic 

Casimir effects which however are also localized well enough. As for the classical low-energetic 

vacuum, it is always free and presents always and everywhere. In this respect so-called ‘hierarchies 

problems’ for vacuums should be considered not so far  as ‘great  problems’ but rather as not a well 

enough posed (in terms of traditional quantum field theory – QFT) question.    

What is really a serious challenge to QFT that is the long-term unrevealing of the Higgs bosons 

(HB). But from our point the problem is not how to find the HB but just how to remove them 

without violation of basic features of SM. Well, if there is some gauge condition providing a ‘grace 

exit’ of HB from SM.  

The point is that the staton approach does not provide for any other free carriers of scalar field 

besides ‘statons’ (i.e. effective pairs of ‘+’ and ‘-’ statons) in the laminar component or ‘psions’ 

(effective neutrino-antineutrino pairs) for the vortex component of scalar ‘condensate’.  

In order to avoid the ambiguities, it is worth to notify that we are talking about the free scalar 

field, both laminar and vortex, as about the ‘condensate’ (in the quotation marks) as well, just in a 
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sense (and due to) that ‘statons’ and ‘psions’ are assigned to be some ‘quasiparticles’, but of course 

only effectively composed from two dual components that is without any real coupling similar to 

the Cooper couples. 

In the free ‘condensate’ (classical vacuum) the propagation of any wave perturbations proves to 

be possible only in a form of electromagnetic waves, so that interaction is transferring by photons. 

In the bound condensate (quantum vacuum) such a role passes on to intermediate bosons (and 

hypothetical gluons). In that picture there is no place for HB, to be an artifact of phenomenological 

Higgs mechanism providing the masses for particles and fields. So, the Moor has done his duty, let 

him go away. 

Note that in staton treatment of Gravity there is no place for the gravitational waves as well, 

they are to be as far elusive phenomenon in GR as so the discussed Higgs bosons in Particle 

Physics. 

[1] See another presented reports of our as necessary. 
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 В докладе изложены основы бинарной геометрофизики, представляющей собой новый 

подход к построению объединенной теории пространства-времени и физических 

взаимодействий [1]. В отличие от всех известных физических теорий, в этом подходе с 

самого начала не постулируется существование классического пространства-времени, а 

предлагается его построение, исходя из понятий алгебраической теории бинарных систем 

комплексных отношений, вводимых между элементами двух множеств (своеобразной 

бинарной геометрии), трактуемых как начальные и конечные состояния микросистем.  

 Предложенная теория опирается на идеи квантовой теории S-матриц, многомерных 

геометрических моделей физических взаимодействий типа теории Калуцы-Клейна и теории 

прямого межчастичного взаимодействия Фоккера-Фейнмана. В этом подходе существенно 

используется идея о макроскопической природе пространства-времени, согласно которой 

классические пространственно-временные представления справедливы лишь при описании 

достаточно сложных макросистем и теряют силу в микромире, где им на смену приходят 

иные закономерности.  

 В докладе был представлен ряд результатов в рамках данной теории, касающихся, 

главным образом, способа объединения известных видов физических взаимодействий: 

сильных и электрослабых. В этом подходе гравитационные взаимодействия не являются 

первичными, а определяются другими взаимодействиями и возникают вместе с понятиями 

классического пространства-времени. 

 

[1]. Владимиров Ю.С. Реляционная теория пространства-времени и взаимодействий. Часть I. 

Теория отношений. – М.:Изд-во МГУ, 1996. -262с. 
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A regular approach looks the speed of gravitation as a speed of weak waves of the metrics. This study 

realizes a new approach, defining the speed as a speed of travelling waves in the field of gravitational inertial 

force. D’Alembert’s equations of the field show that this speed is equal to the light velocity corrected with 

gravitational potential. The approach leads to the new experiment to measure the speed of gravitation, which, 

having “detectors” like as planets and their satellites a base, is not linked to deviation of geodesic lines and 

quadrupole mass-detectors with its specific technical problems. 

 

 

1. Introduction 
 

We take a pseudo-Riemannian space with the signature ( −−−+ ), where time is real and spatial 

coordinates are imaginary, because the projection of four-dimensional impulse on the spatial section 

of any given observer is positive in this case. We also sign space-time indices Greek, while spatial 

indices Roman. So, the time term in d’Alembert’s operator □□□□ βα
αβ ∇∇= g  will be positive, while 

the spatial part (Laplace’s operator) will be negative ki

ikg ∇∇−=∆ . 

Applying the d’Alembert operator to a tensor field, we obtain the d’Alembert equations of the 

field. The non-zeroes are the d’Alembert equations containing the field-inducing sources. The 

zeroes are the equations without the sources. If no the sources, the field is free. This is a free wave. 

There is the time term 
2

2

2

1

ta ∂
∂
 including the linear velocity a  of the wave. So, being applied to 

gravitational fields, the d’Alembert equations give a possibility to calculate the speed of 

propagation of gravitational attraction (the speed of gravitation). In the same time the result may be 

different depending from a way we define the speed as the velocity of waves of the metric or 

something else. 

A regular approach set forth the speed of gravitation as follows [1, 2]. One considers the space-

time metric αβαβαβ ζ+= )0(gg , composed of a Galilean metric )0(

αβg  (wherein 1)0(

00 =g , 0)0(

0 =ig , 

ikikg δ−=)0( ) plus tiny corrections αβζ  defining a weak gravitational field. Because αβζ  are tiny, we 

can lift and lower indices with the Galilean metric tensor )0(

αβg . The quantities αβζ  are defined with 

the main property of the fundamental metric tensor β
α

σβ
ασ δ=gg  as β

α
σβ

ασασ δζ =+ gg )( )0( . Besides 

the approach defines αβg  and αβgg  det=  to within higher order terms as αβαβαβ ζ−= )0(gg  and 

ζ+= )0(gg , where σ
σζζ = . Because αβζ  are tiny we can take Ricci’s tensor σ

ασβαβ
   ⋅⋅⋅= RR  (the 

Riemann-Christoffel curvature tensor αβγδR  contracted by two indices) to within higher order terms 

withheld. Then the Ricci tensor for the metric αβαβαβ ζ+= )0(gg  is 

2

1

2

1
2

)0( =
∂∂

∂
= νµ

αβ
µναβ

ζ

xx
gR □□□□ ,αβζ  

that simplifies Einstein’s equations αβαβαβαβ λκ gTRgR   
2
1 +−=− , wherein this case means 

µν
µν RgR )0(= . In the absence of substance and λ -fields ( 0=αβT , 0=λ ), that is in emptiness, the 

Einstein equations for the metric αβαβαβ ζ+= )0(gg  become 
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□□□□ .0=β
αζ  

Actually, these are the d’Alembert equations of the corrections αβζ to the metric 

αβαβαβ ζ+= )0(gg  (weak waves of the metric). Taking the flat wave along xx =1 , we see 

,0 
1

2

2

2

2

2
=









∂
∂

−
∂
∂ β

αζ
xtc

 

so weak waves of metric travel at the light velocity in an empty space. 

This approach leads to an experiment, based on that geodesic lines of two infinitely close test-

particles deviate in a field of waves of the metric. A system of two real particles connected through 

a spring (a quadrupole mass-detector) shall react to the waves. The most of such experiments were 

linked with Weber’s detector since 1968. The experiments have not arrived to a result until now, 

because of problems with measuring precision and other technical problems [3]. 

Is the approach that above the best? Really, the resulting d’Alembert equations are derived from 

the formula of the Ricci tensor, which was obtained under the substantial simplifications of higher 

order terms withheld. Eddington [1] wrote that a source of this approximation is a specific reference 

frame which differences from Galilean reference frames with the tiny corrections αβζ , an origin of 

which could be very different, not only gravitation. This is a “vicious circle”, Eddington wrote. So, 

the regular approach has got its own drawbacks as follows: 

1. The approach gives the Ricci tensor and the d’Alembert equations of the metric to within 

higher order terms withheld, so the velocity of waves of the metric calculated from the 

equations is not finally exact theoretical result; 

2. A source of this approximation are the tiny corrections αβζ  to a Galilean metric, an origin of 

which may be very different, not only gravitation; 

3. Two bodies attract one another, because of the transfer of gravitational force. A wave 

travelling in the field of gravitational force is not the same that a wave of the metric — these 

are different tensor fields. When a quadrupole mass-detector registers a signal, then the 

detector reacts a wave of the metric in accordance with this experiment theory. Therefore it 

is possible that quadrupole mass-detectors would be good to discover waves of the metric, 

however the experiment is only oblique to measure the speed of gravitation. 

The reasons lead us to consider gravitational waves as waves travelling in the field of 

gravitational force, that provides two important advantages: 

1. The mathematical apparatus of chronometric invariants (physical observable quantities in 

the General Theory of Relativity) define gravitational inertial force iF  without the Riemann-

Christoffel curvature tensor [4, 5]. Using the methods, we can deduce the exact d’Alembert 

equations for the force field, that give an exact formula for the velocity of waves of the 

force; 

2. Experiments to register waves of the force field, having “detectors” like as planets or their 

satellites a base, does not link to the quadrupole mass-detector and its specific technical 

problems. 

 

 

2. The new approach 
 

A base here is the mathematical apparatus of chronometric invariants, developed by Zelmanov in 

1940’s [4, 5]. Its essence is that, if an observer accompanies his reference body, his observable 
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quantities (chronometric invariants) are projections of four-dimensional quantities on his time line 

and the spatial section, made by projecting operators dsdxb αα =  and βααβαβ bbgh +−=  which 

fully define his real reference space. For instance, chr.inv.-projections of any world-vector αQ  are 

000 gQQb =α
α  and ii QQh =α

α , while chr.inv.-projections of any world-tensor of the 2
nd
 rank 

αβQ  are 0000 gQQbb =αβ
βα , 000 gQQbh ii =αβ

βα , ikki QQhh =αβ
βα . Observable properties of the 

space are derived from the non-commutativity of chr.inv.-derivating operators 
tgt ∂
∂

=
∂
∂∗

00

1
 and 

t
v

cxx
iii ∂
∂

+
∂
∂

=
∂
∂ ∗∗

2

1
. Those are the chr.inv.-vector of gravitational inertial force iF , the chr.inv.-

tensor of angular velocities of the space rotation ikA , and the chr.inv.-tensor of deformation rate of 

the space ikD , namely 
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where kiikik vv
c

gh
2

1
+−=  is the metric chr.inv.-tensor, ikhh  det= , w  is gravitational potential, iv  

is the linear velocity of the space rotation. Observable non-uniformity of the space is set up by the 

Christoffel chr.inv.-symbols mjk

imi

jk h ,∆=∆ , which are built just like as the Christoffel regular 

symbols σµν
ασα

µν ,Γ=Γ g  using ikh  instead of αβg . 

Four-dimensional generalization of the chr.inv.-quantities iF , ikA , and ikD  had been obtained 

by Zelmanov in 1960’s [6] as follows βα
β

α abcF 22−= , µν
ν
β

µ
ααβ ahchA = , µν

ν
β

µ
ααβ dhchD = , where 

)(
2
1

αββααβ bba ∇−∇=  and )(
2
1

αββααβ bbd ∇+∇= . 

 So forth, following the study [7], we consider a field of the gravitational inertial force 

βα
β

α abcF 22−= , which chr.inv.-projections are iF  and the mentioned k

iki FhF = . The d’Alembert 

equations of the vector field α
β

βα ⋅
⋅−= abcF 22  in the absence of its sources are □□□□ 0=αF . Their 

chr.inv.-projections (the d’Alembert chr.inv.-equations), generally speaking, can be deduced as 

follows 

.0            ,0 =∇∇=∇∇ σ
βα

αβ
σ

σ
βα

αβ
σ FghFgb i  

 After some algebra we obtain the d’Alembert chr.inv.-equations for the field of the gravitational 

inertial force α
β

βα ⋅
⋅−= abcF 22  in their final form. They are 
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 Called on the formulas for chr.inv.-derivatives, we transform the first term in the vector 

d’Alembert chr.inv.-equations to the form 
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so waves of gravitational inertial force travel with a velocity, a modulus of which is 

. 
w

1 
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 −==
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cuuu k

k  

Because waves of the field of gravitational inertial force transfer gravitational interaction, this 

waves speed is the speed of gravitation as well. The speed depends on the potential w  of the field 

itself, that lead us to the next conclusions: 

1. In a weak gravitational field, a potential w  of which is negligible but its gradient iF  is non-

zero, the speed of gravitation equals the light velocity; 

2. According to this formula, the speed of gravitation shall be lesser than the light velocity near 

bulk bodies like stars or planets, where gravitational potential is perceptible. On the Earth 

surface slowing gravitation down shall be 21 cm/sec. Gravitation near the Sun shall be 
4103.6 × cm/sec slow than light. 

3. Under gravitational collapse ( 2w c= ) the speed of gravitation becomes zero. 

Let us turn out from theory to experiment. An idea to measure the speed of gravitation as a 

speed to transfer the attracting force between space bodies had been proposed by mathematician 

Dombrowski in his conversation with me a decade before. But in the absence of theory the idea had 

not arrived to experiment in that time. Now we have an exact formula for the speed of waves 

travelling in the field of gravitational inertial force, so we can propose an experiment to measure the 

speed (a Weber detector reacts to weak waves of the metric, so it is inapplicable to put this idea into 

experiment). 

So, the Moon attracts the Earth surface looking to her stronger than the opposite. As a result, the 

flow “hump” in the ocean surface follows the moving Moon producing ebbs and flows. Analogous 

“hump” follows the Sun, its height is more lesser. A satellite in an Earth orbit has the same ebb and 

flow oscillations, its orbit lowers and lifts for a little following the Moon and the Sun as well. A 

satellite in airless space does not any friction to the contrary of viscous water in the ocean. A 

satellite is a perfect system, which reacts to the flow carrying instantly. If the speed of gravitation is 

limited, in this case the moment of the satellite’s maximal flow rise should be late from the 

lunar/solar upper transit with the time that waves of gravitational force field travelled from the 

Moon/Sun to the satellite. 

The Earth gravitational field is not absolute symmetric, because of the imperfect terrestrial 

globe. A real satellite reacts to the field defects during its orbital flight around the Earth — the 
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height of its orbit oscillates about decimetres that would be substantial noise in the experiment. 

From this reason a geostationary satellite would be the best. Such satellite, having an equatorial 

orbit, requires an angular velocity the same as that of the Earth. As a result, the height of a 

geostationary satellite above the Earth does not depend on defects of the Earth gravitational field. 

The height could be measured by a laser range-finder with high precision almost without 

interruption, providing a possibility to register the moment of the maximal flow rise of the satellite 

perfectly. 

In accordance with our formula the speed of gravitation near the Earth is minus 21 cm/sec of the 

light velocity. In this case the maximum of the lunar flow wave in a satellite orbit shall be about 1 

sec late from the lunar upper culmination. The lateness of the flow wave of the Sun shall be about 

500 sec after the upper transit of the Sun. A question is how much precisely could be registered the 

moment of the maximal flow rise of a satellite in its orbit, because the real maximum can be 

“fuzzy” in time. 

 

 

3. Effect of the curvature 
 

If a space is homogeneous ( 0=∆i

km ) and it is free of rotation and deformation ( 0=ikA , 0=ikD ), 

then the d’Alembert chr.inv.-equations for the field of gravitational inertial force take the form 
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so waves of gravitational inertial force can be even in this case. 

Waves of metric are linked with the space-time curvature deriving from the Riemann-

Christoffel curvature tensor. If the first derivatives of the metric (the space deformations) are 

zeroes, then its second derivatives (the curvature) are zeroes too. Therefore waves of metric have 

not a place in a non-deforming space, while waves of gravitational inertial force are possible 

therein. 

In connection with this fact, following the study [7], the next question rises. How much affects 

the curvature on waves of gravitational inertial force? 

To answer this question, let us remember that Zelmanov [4], following the way that the 

Riemann-Ciristoffel tensor was introduced, after taking the non-commutativity of the second 

chr.inv.-derivatives of a vector j

j

lki
lik

liklki QH
t

Q

c

A
QQ ⋅⋅⋅

∗
∗∗∗∗ +

∂
∂

=∇∇−∇∇   

2

2
   had arrived to the 

chr.inv.-tensor j

lkiH ⋅⋅⋅    like Schouten’s tensor [8]. Its generalization gives the curvature chr.inv.-tensor 

)(
4
1

iljkkljijkillkijlkij HHHHC −+−= , which has all properties of the Riemann-Christoffel tensor in 

the observer’s spatial section. So the spatial chr.inv.-projection ikljiklj RcZ 2−=  of the Riemann-

Christoffel tensor αβγδR , after contraction by ikh  twice, is CcAADDDZ ik

ik

ik

ik

22 −−−= , where 

lj

ljj

j ChCC ==  and kimj

imi

kijkj ChCC == ⋅⋅⋅    . 

In the same time, as it was shown in Synge’s book [9], in a space of a constant four-dimensional 

curvature const=K  we have )( βγαδβδαγαβγδ ggggKR −= , αβαβ KgR 3−= , KR 12−= . So forth, 

having the formulas a base, after calculation the spatial chr.inv.-projection of the Riemann-

Christoffel tensor we arrive to that in a constant curvature space KcZ 26= . Equalizing it to the 
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same quantity in an arbitrary curvature space, we obtain a correlation between the four-dimensional 

curvature K  and the observable spatial curvature in the constant curvature space 

.6 222 CcAADDDKc ik

ik

ik

ik −−−=  

If the four-dimensional curvature is zero 0=K , and also the space does not deformations 

0=ikD  (its metric is stationary const=ikh ), then no waves of the metric there exactly. In such 

space the observable three-dimensional curvature is 

,
1
2

ik

ik AA
c

C −=  

it is non-zero 0≠C , if only the space rotates 0≠ikA . If, aside for these, the space does not rotate, 

then its observable curvature also becomes zero 0=C . Even in this case the obtained d’Alembert 

chr.inv.-equations show the presence of waves of gravitational inertial force. 

 What this implies? As a matter of fact that gravitational attraction is an everyday reality of our 

world, so waves of gravitational inertial force transferring the attraction shall be incontrovertible. 

Therefore we arrive to the alternative: 

1. Waves of gravitational inertial force depend on a curvature of space, then the real space-

time is not a space of constant curvature; 

2. Either waves of gravitational inertial force do not depend on the curvature. 
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The detection and the research of the neutrinos background of Universe are the attractive problems. These 

problems do not seem the unpromising one in the case of the high neutrinos density of Universe. It was 

offered before to use the low energy neutrinos background of Universe for the explanation of the 

gravitational phenomena with the quantum position attracting the Casimir effect for this. As a result it was 

connected the gravitational constant with the parameters characterizing the electroweak interactions. If now 

we shall be based on the results of the experiments fixing the equality of the gravitation mass and the inert 

one then it can consider that the spectrum of the particle masses is defined by their interaction with the 

neutrinos background of Universe. This statement is confirmed what the rest mass of the photon is equal to 

zero in contradistinction to the masses of the vector bosons W
+
, W

-
, Z

°
 which’s interact with the neutrinos 

immediately. 

 

1. Introduction 
The making of a physical theory embracing all an energy spectrum of interactions is a fairly 

difficult task. In consequence a construction of asymptotical theories both in high-energy and low-

energy ends of this spectrum was justified historically. The most considerable success attended the 

work in the high-energy approximation, in a result of which was made quantum electrodynamics 

(QED) giving the prediction confirming experimentally with the remarkable precision. Naturally, 

that this theory became the imitation specimen by the construction of the analogous theories of the 

strong interaction (the quantum chromodynamics (QCD)) and the weak one (Salam-Weinberg 

model). The every possible theories describing continuum with the large number of particles such 

as the theories of solid bodies, liquids, gases, plasma, an electromagnetic radiation, shells, nuclei at 

low energies and also General Relativity (GR) is related to the opposite end of the energy spectrum. 

GR look the exclusion against this background, what gave the reason to consider the gravitation is 

only the effect of the existence of the space-time curvature. 

Admittedly the theories wrecking the present idea are appearing in the second half of XX 

century such as the two-tensor gravitation theory [1], in which was made the attempt to rewrite the 

theory of nuclear interactions into the geometrical language. It can attribute to like works also and 

the gauge theory of the dislocations and disclinations [2]. In consequence of this the transfer to the 

geometrization description as the most comfortable one in the long-wave length range for any 

interactions is the logical one. Thereby it is wrecked fully the exceptionality of the gravitation and 

the forces corresponding to it are not to be distinguished between others, such as Yukawa forces 

and the Van der Waals forces. So it is necessary to show that the gravitation interaction is not a 

fundamental one, but the one is induced by others interactions as possible hypothetical ones. The 

more so, that the gravitational constant GN ≈ 6.7 · 10
-39

 GeV
-2

 (it is used the system of units h/2π = c 

= 1, where h is the Planck constant and c is the light speed) is a suspiciously small value and a 

dimensional one furthermore (as is known the latter prevent to the construction of the 

renormalizable quantum theory). 

Before building the theory of the induced gravitation on the base of the hypothetical 

interactions and the hypothetical particles it was necessary to verify the possibility of the use of the 

known particles and the known interactions for this purpose. Naturally that the neutrinos are the 

most suitable particles for this taking into account their penetrating ability, which allow them to 

interact with all the substance of the macroscopic body - not with the surface layer only. As is 

known [3], already in 30th Gamow and Teller offered to use the neutrinos for the explanation of the 

gravitation, but their mechanism provided the direct exchange of the pairs consisting of a neutrino 

and an antineutrino and therefore the one does not correspond to the modern conceptions of the 

theory of interactions. 
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Bashkin's works appearing in 80th on a propagation of the spin waves in the polarized gases [4] 

allowed to make the supposition [5], that the analogous collective oscillations are possible under 

certain conditions as well as in the neutrinos medium. Since the collective oscillations can induce an 

interaction between particles, Bashkin's works make us to pay attention to the background neutrinos 

[6] (under which we shall imply antineutrinos, too) filling our Universe. If the effective temperature 

of the Universe neutrinos is the fairly low one then it is fulfilled one of conditions (λ » rw, where λ is 

the de Broglie's wave-length of a neutrino and rw  is the weak interaction radius of an one [4]) of the 

propagation of the spin wave in the polarized gases. As a result the quantum effects become the 

determinative ones in such medium and the interference of the neutrinos fields (being the 

consequence of the known identity of elementary particles) must induce the quantum beats, which 

will be interpreted as zero oscillations of a vacuum. In consequence of this the mathematical 

apparatus [7] applied by the description of the Casimir effect [8] can be used. 

 

2. The Casimir effect 
We shall be interesting in quantum beats arising by the interference of the falling polarized flow of 

the relict neutrinos on the macroscopic body with the scattered one at this body. Let's suppose for 

this the neutrinos have the zero rest mass (the other version [6] will not be considered), so that the 

direction of their spin is connected hardly with the direction of their 3-velocity. In consequence of 

this only those neutrinos can be considered as ones forming the polarized flow, which propagate 

along straight line connecting specifically two particles of different macroscopic bodies. It explains 

the anisotropy of the zero quantum oscillations, which is necessary to obtain the right dependence 

(1/R) of the energy of the two-particle interaction on the distance R between particles in the Casimir 

effect. 

Let's consider two macroscopic bodies with masses m1 and m2 and with the fairly long distance 

R one from another. We shall  regard,  that the bodies contain 2m1l and 2m2l particles 

correspondingly (where the normalizing factor l is connected with cross-section σ of the neutrino 

upon the particle), implying thereby the statistics averaging of the properties of the elementary 

particles constituting the bodies.  If the particles of the macroscopic bodies had interacted with all 

neutrinos being incident on them then these particles might have been considered as the opaque 

boundaries, which induce Casimir effect on the straight line. By this the energy of the interaction of 

the particles would have been equal to [7] 
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(A is a number of a particle of the first macroscopic body and B is a number of a particle of the 

second body). On account of the weakness of the interaction of neutrinos with particles we are 

confined to a first approximation, so that the energy E of the interaction of two macroscopic bodies 

is equal to 
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Neglecting  the dimensions of the bodies  in comparison with interval  R  between  them (RAB ≈ R), 

we shall have finally 

R
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−≈ ,                                                      (2.3) 

where  Gν = π l
2
 /6.  

 

3. The estimate 
Consider the scattering of the neutrino upon the charge lepton, induced by the exchange of the 

neutral Z
°
 boson (taking account of the low energy of the relict neutrinos) only. The amplitude of 

the process in the lower approximation can be written down as 
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in consequence of this the square of the amplitude (spin-average) will take the form 
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where γi, γ
i
 are the Dirac matrices, e is a bispinor describing of a charge lepton, p is its original of 4-

momentum and p' is the finite 4-momentum of it (m is the rest mass of a charge lepton); ν is 

bispinor, describing of the neutrino, k is its original 4-momentum and k' is the finite 4-momentun of 

it; + is the symbol of the Hermitian conjugation; GF ≈ 1.166 · 10
-5

 GeV
-2

 is Fermi's constant. Here 

and further 
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,,sin +=−=−=Θ= IIi RLW     (3.3) 

(I is the unit matrix and ΘW is the weak angle). By analogy we can get the square of the scattering 

amplitude of the antineutrino upon the charge lepton as 
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As a result the cross-section of the scattering for the neutrino proves to be equals to the cross-

section of the scattering for the antineutrino in the low-energy approximation (the energy of the 

neutrino ω « m) and they are written down as 
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Note that σ
Z
 proves to be minimal for ξ = 1/4. As the low energy neutrinos scarcely are able to 

change the spin direction of the particles of a macroscopic body, their scattering must be 

accompanied the collision radiation. In consequence of this the cross-section has the form σν = kσ
Z
, 

where for the charge leptons the factor k = ke depends on the fine structure constant α ≈ 1/137 only, 

while for the quarks the factor k = kq must depends on the running coupling constant αs too, which 

define the collision radiation by gluons. 

For the crude estimate of the constant Gν let us consider the scattering the relict neutrino upon 

the electron only, supposing that  
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Besides substituting the middling 
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instead of ω we receive the following value of the constant 

 
238106/ −−≈= GeVG νν σ ,                                                                    (3.8) 

(T ≈ 1.9 K ≈ 1.64 · 10
-13

 GeV, <ω> ≈ 3.15 T ≈ 5.166 · 10
-13

 GeV, ξ ≈ 0.23), which is near to the 

known value of the gravitational constant GN  [12]. 
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4. Conclusion 
So the gravitational phenomena can be explained by the presence of the collective oscillations in the 

neutrinos medium. In consequence it might be worthwhile to return to the potential 

( ) BRe
R

A
RV −=  

of which Seeliger [9] suggested to substitute the Newton potential and to note the gravitational 

potential (it is possible in an any approximation) as 
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ieA
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1
 

in the general case where the constants Ai and Bi characterize the different media. By this we can be 

based on the theory of the strong gravity (see, for example the work [10]). Moreover, having the 

neutrinos Universe and taking account of the Fermi-Dirac statistics we can recollect about the 

Sakharov hypothesis [11] using the idea of the metrical vacuum elasticity for the explanation of the 

gravitational interactions. But the main idea is it now for us what the normal matter (not neutrinos) 

acts as the Brownians by the help of which it can make the attempt to estimate the statistics 

characterization of the Universe neutrinos background. In the capacity of one from such indicator 

we offer to use the particles masses, which are connecting with the scattering cross-section of the 

neutrinos. Note in tie with it, what we can ignore the photon collision radiation by the neutrinos 

scattering on the hadrons which’s the quark resonator because of the existence of the additional 

degree of freedom in comparison with the electron. Exactly the resonance scattering causes to a 

gain in the hadrons masses by a factor of 10
3
 in comparison with the electron mass.  
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Exterior gravitational fields of massive Schwarzschild's, Kerr's and NUT's particles have an algebraic type D. 

When a velocity of fast moving particles tend towards the light velocity along z axis and the total energy of 

each particle is constant (i.e. a rest mass of the particle tends towards zero) together with Kerr’s angular 

momentum along z axis and with NUT's parameter which also tend to constants then the gravitational fields 

of these fast moving particles tend towards the wave's fields of the N and III algebraic types as their limits. 

The lightlike limit of massive particle can be described as cusp catastrophe on the level of Weyl’s matrix 

with the change of gravitational field symmetry of such source. In considered cases this is the phase 

transition of the gravitational field from D type into N type or III type (transition of one “phase” to another). 

Petrov’s algebraic types are different “phases” of gravitational field. As result of the lightlike limit procedure 

we can obtain the lightlike limit’s particle as a scalar particle or as a spinning particle with a helicity. It is 

shown that the lightlike sources in General Relativity "no have hairs" 

 

1. Introduction 
In the classical electrodynamics a task of finding the field of electric charge when its velocity tends 

to the light velocity is well known [1]. The limiting field of such fast moving charge particle 

approaches to the field of monochromatic electromagnetic plane wave. The similar problem in 

General Relativity (GR) for Petrov’s symmetric 6x6 curvature matrix of the gravitational field of a 

fast moving particle is considered in [2].  

However a correct solution of two last problems is connected with use of generalized functions 

(δ -functions of Dirac) [3]. In this case the limit velocity V  tends to the light’s velocity c  (here we 

have 1=→ ñV ), and the rest mass tends to zero ( 00 →m ) so that a total relativistic energy of the 

particle is a constant, constE = . We shall call this procedure as a lightlike limit. We introduce 

Weyl’s matrix as the Petrov symmetric 33×  traceless complex matrix in 3D Euclidean space. 

The similar limit on the level of Weyl's matrix eigenvalues we will call this procedure as a 

lightlike limit on the level of Weyl’s matrices. Such lightlike limit can be described as the cusp 

catastrophe. 

The aim of this paper is to summarize results of lightlike limits of the Schwarzschild, Kerr and 

NUT particles on the Weyl’s matrices level and investigations connected with the theory of 

catastrophe (phase transitions of algebraic types of gravitational fields. 

 

2. Lightlike limit of a massive particle as catastrophe 
An exterior gravitational field of a rest massive particle is described by the Schwarzschild solution 

[4], which belongs to an algebraic type D  
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Here DW
)

 is a canonical traceless symmetric Weyl matrix of D type of Petrov’s algebraic 

classification [5]; 0m  is a rest mass of the particle; 0r  is a radial variable. If the particle velocity 

tends to the light velocity along z-axis when a total relativistic energy of the particle is constant (i.e. 
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00 →m ), then a limiting field will be described as the gravitational plane wave of Petrov’s N type 

with a singular source. Such procedure is the lightlike limit on the Weyl matrix level. 

The lightlike limit on the metric level for the Schwarzschild particle in the isotropic coordinates 

was considered in [6] and in the Kerr-Schild coordinates in [3,7] We will investigate here the 

lightlike limit  on the Weyl matrix level for the Schwarzschild-like particle [3,8]. In this case the 

orthogonal transformation with a matrix 
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must be used under condition 1→V . The matrix T
)
 has property 1

~~
11 ==== −− TTTTTTTT

))))))))
 with a 

transpose matrix 1
~ −= TT

))
; 12 −=i ; 2/12 )1(cosh −−= Vψ  and 2/12 )1(sinh −−= VVψ . We take 

lightlike limit under condition 1→V  and correspondingly ∞→ψ .  

At the resting frame of reference for the gravitational field of massive particle on the level of 

Weyl's matrix we can write 
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where 2/12 )1( −−= Vε ; 
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0mE =  is a total particle energy, constE = ; 2222 )( VtzR ++= ερ ; 
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“an electric type matrix” )(E
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 and “an magnetic type matrix” )(B
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 are two parts of N type 

Weyl’s matrix 
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In the electrodynamics there are an similar situation in the transition from laboratory inertial 

frame of reference with an electric field  to any other  inertial frame of reference, BiEF
vvr

+= , 

where E
r
 is a strength of the electric field and B

v
 is a strength of the magnetic field.  

The Weyl’s matrix of N type (the gravitational wave type) can be rewritten as the skeleton's  

representation 

llWN

~
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)
,              (2.7) 

where )0,,1(
~

il =  is a lightlike vector-row, 0
~
=ll .  

In [3] it is shown that under condition 1→V  the factor  
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Fig.1 The cusp catastrophe’s surface 

and its projection onto the plane of 

control parameters p and q. 

 

where )( tz +δ  is the δ -function of Dirac. 

Then we find for lightlike limit of Weyl’s matrix 

NWW
))

3)( →ε ,             (2.9) 

i.e. this limit gives Weyl’s matrix of the gravitational plane wave. 

From the point of view of a catastrophe theory [9] such lightlike limit is the catastrophe. To 

discover  this  fact we put an eigenvalue problem for Weyl's matrix  

XXW λ=
)

,              (2.10) 

where X is a vector- column and λ  is a eigenvalue. 
The characteristic equation is written as 

0)det( 3 =++∝− qpIW λλλ
))

,          (2.11) 

where )1,1,1(diagI =
)

 is an identity matrix; 43ε−=p  and 62ε−=q . 

The equation (2.11) can be considered as the extremum equation of a "potential function"    
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24
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24

,           (2.12) 

which describes the cusp catastrophe. 

On Fig.1 a surface of the cusp catastrophe and its projection onto the plane of control 

parameters p  and q  can be seen. The cusp point ( 0== qp ) 

is point of the second kind's phase transition. In our case this is 

the phase transition of the gravitational field from D type into 

N type (transition of one “phase” to another). Petrov’s 

algebraic types are different “phases” of gravitational field. 

The parameter p  plays a role of the temperature here, the 

derivative pU ∂∂ /  plays the role of an entropy and 

22 / pU ∂∂ corresponds to a thermal capacity [7,8].  

The discriminant of the equation (2.11) is 
23 )2/()3/( qpQ +=  When 0=Q  we have semicubical 

parabola 3/2)2/(3 qp −=  respective to Weyl’s matrix of D type 

(see Fig.1). Our case is marked by a cross ( 0<q )  

The equation (2.11) has three roots: 2
231 2/ ελλλ −=−== . Then the potential function (2.12) 

has following values: 12/)()( 2
31 pUU == λλ  and 3/2)( 2

2 pU −=λ . In the point of cusp can be 

seen jumps of second derivatives 6/1)/( 22 =∂∂∆ pU and 3/4)/( 22 −=∂∂∆ pU   which are 

accompanied by the jump of the Weyl matrix's rank from 3=r  (D type) to 1=r  (N type), where ∆  

is the jump of the second derivative's value of the potential function U . 

The Weyl matrix (2.3) has two eigenvectors. The first eigenvector 1X corresponds to eigenvalue 

2λ  and under the lightlike limit operation )1,0( →→ Vε  tends to lightlike eigenvector ilL = : 

LiX
~

)0,1,)1/((
~ 2/12
1 →−−= −ε , where  

0=LWN

)
.               (2.13) 

The second eigenvector )1,0,0(
~
2 =X  is also the eigenvector of Weyl’s matrix of N type, 

02 =XWN

)
. So the lightlike limit gives the Weyl matrix of N type and this limit corresponds to the 

second phase transition (Fig.1). 
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We have a change of symmetry of gravitational equations' solutions under such lightlike limit. 

The Schwarzschild-like's limiting metric as result of the lightlike limit can be written [3,7-8] 

                                                                  νµµνµν δ lHlg 8−= ,                                            (2.14) 

where 3,2,1,0, =νµ ; )1,1,1,1( −−−= diagµνδ ; )ln()(2 22 yxtzEH ++−= δ ; 30
µµµ δδ +=l ; 0=µµll . 

The metric (2.14) describes a singular source and is an exact solution of Einstein’s exact 

equations  

□ µνµν π Tg 8−= ,             (2.15) 

where □ is D’Alamber’s operator in Minkowski space-time, νµµν δδδ llyxtzET )()()(2 +=  is a 

lightlike radiation’s singular energy-momentum tensor. 

The metric (2.15) has two Killing’s vectors: lightlike vector )//( ztL ∂∂+∂∂=ξ and spacelike 

vector )//( xyyxZ ∂∂−∂∂=ξ , which defines the axial symmetry and in polar coordinates it equals 

to ϕ∂∂ / .  

The Schwarschild-like solution has four Killing’s  vectors: timelike vector tT ∂∂= /ξ   and three 

spacelike vectors: )//( yzzyX ∂∂−∂∂=ξ ; )//( zxxzY ∂∂−∂∂=ξ ; )//( xyyxZ ∂∂−∂∂=ξ . 

Further the Lorentz boost is applied to Killing's vectors of Schwarzschild's solution and when it is 

tended towards velocity of light then vector Zξ  will be invariable and vectors YXT LLL ξξξ
)))

,, will 

be degenerated into lightlike vector.  

Therefore the lightlike limit of massive particle can be described as cusp catastrophe on the 

level of Weyl’s matrix with the change of gravitational field symmetry of such source. In this case 

we have a scalar lightlike particle. 

 

3. Lightlike limit of a massive NUT particle as catastrophe 
An exterior gravitational field of a massive particle describing by the NUT solution [10-11] has an 

algebraic type D. Under the lightlike limit when the particle velocity tends to the light velocity 

along z  axis, the total energy of the particle is constant (i.e. 00 →m ) and NUT’s parameter 

constBb =→  then the limiting field will be the gravitational wave of N type without the NUT 

parameter [12,13].  

The NUT metric can be written in both forms NUT and Misner [10-11]. If we will take the NUT 

solution in these forms for NUT’s any parameter we find nonzero components of curvature 

tensor: )(22222 665544332211 rRRRRRR α−===−=−=−= ; =−=−= 362514 22 RRR  )(2 rβ− , where 

Petrov's map for indexes is used and  
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Weyl’s matrix in this case is  
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where the canonical the Weyl matrix of D type is 
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At the resting frame of reference for the gravitational field of NUT particle on the level of 

Weyl's matrix we can write  

1−= TWTW NUT

))))
.             (3.5) 

An applying of the lightlike limit’s procedure to Weyl's matrix of NUT solution leads to the 

limit of matrix (3.5) 
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Thus the limiting Weyl's matrix for NUT solution is the matrix of N type. Now we can eliminate 

the NUT parameter B  by means of rotation in complex plane with EB /tan −=ϕ  and with a new 

choice of parameter E  as EBE →+ 22 . 

As in the case with Schwarzschild’s particle here we also have the lightlike limit of Weyl’s 

matrix is a catastrophe from the point of view of the eigenvalue problem. The cusp point 

( 0== qp ) is the point the phase transition of NUT’s gravitational field from D type into N (Fig.1). 

Also under such limiting procedure can be seen the change of the symmetry of gravitational fields 

as degeneration of Killing’s vectors into the Killing lightlike vectors. 

Therefore the lightlike limit of massive the NUT particle can be described as cusp catastrophe 

on Weyl’s matrix level with the change of gravitational field symmetry of such source and loss of 

the NUT parameter. So and in this case we have a scalar lightlike particle. 
 

4. Lightlike limit of a massive Kerr particle as catastrophe 
An exterior gravitational field of a spinning massive particle is described by the Kerr solution [14], 

which has an algebraic type D. If the particle velocity tends to the light velocity along z  axis when 

the total energy E of the particle is const (i.e. the rest mass 00 →m ) and Kerr's angular momentum 

along z axis EJmaLZ ⋅→= 0  then the limiting gravitational field will be by the gravitational wave 

of III type with the spinning singular source [3,7,15]. Here 0/mLa Z=  is Kerr’s relative angular 

momentum, J  is the limit of Kerr’s relative angular momentum under the lightlike limit and 

constJ = .  

If we will write the Kerr solution in Boyer-Lindquist coordinates we can find all nonzero 

components of a curvature tensor in a slow spinning approximation (i.e. 0/mLa Z= is a small) with 

the using of Petrov’s map for indexes of the curvature tensor : 3
0332211 /222 rmRRR =−=−= ; 

θsin)/6(22 4
035262415 rmaRRRR ==== ; =−= 2514 2RR  θcos)/6(2 4
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matrix in this case is 
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For the gravitational field of Kerr’s fast moving particle at the resting frame of reference the 

Weyl matrix can be written as 

1−= TWTW Kerr

))))
,             (4.2) 

where the matrix T
)
is defined by equation (2.2). 
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The lightlike limit’s procedure is applied to Weyl's matrix of Kerr’s solution and leads to the 

limit of matrix (4.2) 
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We can transform this matrix by elementary transformations into Weyl's matrix of the III 

algebraic type (a wave type). On the other hand the matrix (4.3) is a superposition of two matrices: 

N and III algebraic types and we immediately have resulting III algebraic type (see [17]). 

As in the case with Schwarzschild’s and NUT’s particles we have the lightlike limit of Weyl’s 

matrix of Kerr’s solution is the catastrophe from the point of view of the eigenvalue problem. The 

cusp point ( 0== qp ) is the point the phase transition of Kerr’s gravitational field from D type into 

III type (Fig.1).  

A lightlike limiting metric which corresponds to the limiting matrix (4.3) has two Killing's 

vectors only: lightlike vector )//( ztL ∂∂+∂∂=ξ  and an axial spacelike vector ϕξ ∂∂= /Z  in polar 

coordinates. The Kerr solution has two Killing vectors: timelike vector tT ∂∂= /ξ  and an axial 

spacelike vector ϕξ ∂∂= /Z . 

The Lorentz boost is applied to Killing's vectors of Kerr's solution together with the lightlike 

procedure and leads to ZZ ξξ → ; LZ ξξ → .  

Therefore the lightlike limit of massive Kerr’s particle can be described as cusp catastrophe on 

Weyl’s matrix level with the change of gravitational field symmetry of such source. 

In the case of Kerr’s particle with the angular momentum along z  axis we have a spinning 

lightlike particle with a helicity EJLZ ±= . 

When Kerr’s relative angular momentum 0/mLa Z=  is perpendicular to z axis then the lightlike 

limit procedure leads to loss of limiting value of the Kerr's relative angular momentum J . In this 

case under the lightlike limit we have the same result as for the Schwarzshcil’s solution and the 

lightlike limit's particle is the scalar particle. 

Thus the describing lightlike procedure for Schwarzschild’s, NUT’s and Kerr’s solutions leads 

to new lightlike particle with only two freedom parameters: the total energy and the helicity. The 

other physical parameters are lost under such limiting process. So we can say that the lightlike 

sources in General Relativity "no have hairs" [7,16]. 

 

5. On lightlike pencil  
As well known a focusing effect of lightlike geodesic lines is absent if all lightlike particles run in 

the same direction. In this case we can construct the lightlike pencil as a superposition such singular 

sources. This superposition is an exact solution of the linear gravitational equations [3,7,16]. Thus 

for monochromatic lightlike particles with the same total energy E  and helicity ZL  we will have 

metric in cylindrical coordinates for an infinite lightlike pencil as 

ϕϕρρ dvdLHdvdddudvds Z82 22222 −−−−= ,      (5.1) 

where JELEHztvztu Z =−=+=−= ),ln(4,, αρM . 

This metric is reduced to 

22222 2Hdvdddudvds −−−= ϕρρ          (5.2) 

by the coordinate transformation ϕZLuu 8−→ . Therefore, the infinite monochromatic lightlike 

pencil has not of a constant spin (helicity). 
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However, if we have the monochromatic lightlike ray with an endpoint which not equal the 

infinity then such ray may be have the helicity for  

)ln()(4 βρvEH Θ⋅−=             (5.3) 

with a step function  

∫
+

∞−

=+Θ=Θ
zt

dztv ττδ )()()( ,(5.4)           

where )(vδ  is Dirac’s singular function. 
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Einstein equations for a remarkable generalized Lagrange space 
),,(,( )2()1()(2 yyxgMGL ij

n  
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The generalized Lagrange space 
)(2 nGL  provides a convenient relativistic model. The purpose of this paper 

is to study the Einstein equations in the case of )(),,( ),,(2)2()1( )2()1(

xeyyxg ij

yyx

ij γσ= , giving the complete 

calculation for a remarkable metric tensor; the connection with the classical Einstein equations of the 

Riemannian space is also inferred. 

 On the base manifold M the metric tensor )()( )(2 xexg ij

x

ij γσ=  was introduced by Watanabe S., Ikeda S., 

and Ikeda F. [WII]. The Einstein and the Maxwell equations for the first order generalized Lagrange space 

))(),(,( ),(2)1()( )1(

xeyxgMGL ij

yx

ij

n γσ=  were studied by R.Miron and R.Tavakol [MAN]. Generalized 

Einstein-Yang Mills equations for the same space were studied by V. Balan [B]. 

 

1. The coefficients of the canonical metrical N-linear connection 

Let M be a n dimensional ∞C differentiable manifold endowed with the metric tensor 

)(),,( ),,(2)2()1( )2()1(

xeyyxg ij

yyx

ij γσ=       (1.1) 

defined on Osc
2
M   where )( 2MOscF∈σ is a given function and )(xijγ is a Riemannian metric 

tensor field. Consider also N  the canonical nonlinear connection [M] with the coefficients: 
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     (1.2) 

We know that on the total space E exists an unique N-linear connection depending only on the 

Lagrangian L which satisfies Matsumoto’s axioms 

;0| =mijg     0|
)(

=m

A

ijg ;   0=jk
iT ;    0

)(
=ij

m

A
S   ; 2,1=A    (1.3) 

This is the N-linear canonical metrical connection CΓ(N) and it has the coefficients given by: 
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Proposition 1.1  For the considered metric the coefficients of CΓ(N) are: 

jk
ii

jkjk
iL

0
Λ+= γ  ;   jk

i

A
jk

i

A
C Λ=

)(
   ;   2,1=A      (1.5) 

where      
B

i

jkk

B
i

jj

B
i

kjk
i

B
σγσδσδ −+=Λ     2,1,0=B  

and      
jB

j

B

y )(δ
δσ

σ =        ;     s

B
is

B
i σγσ =  ;   xy =)0(    ;  i

jδ  is the Kronecker 

symbol. 

Corollary 1.1 0=Λ jk
i

B
 , 2,1,0=B  if and only if σ is constant. 
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2. Torsions and curvatures 
Let T be the tensor of torsion of an N-linear connection D. For any vector fields )(, EYX χ∈  we 

have: 

T(X,Y)=DXY-DYX-[X,Y]        (2.1) 

This tensor can be evaluated for the pairs of tensor fields ( )HH YX , , ( )AVH YX , , ( )BA VV YY ,  , 

A,B=1,2 and for the canonical metrical N-linear connection CΓ(N). By direct calculation we obtain: 

Theorem 2.1 The d-tensor fields of torsion for CΓ(N) has the local components given by: 
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iT  ;  m

jk

i

mjk
i yrT )1(

1

)0(
=  ; ( ) m

jk

i

m

pqm

jpmk

i

q

m

kpmj

i

qjk
i yryyrrT )1()1()1(

2

)0( 2

1
+−= γγ  

)2,1(
0

)(
=Λ= AP i

jk
A

jk
i

A
  ;  i

jkjk
iP

0

1

)1(
Λ−= ;  m

ij

kr

ij

m

krij
m yP γγγ −= )1(

2

)1(
 

 (2.2) 

0
1

)2(
=jk

iP  ;  i

jkjk
iP

0

2

)2(
Λ−=  ;  0

0

)12(
=jk

iP  ;  i

jkjk
iP

1

1

)12(
Λ=   ;   i

jkjk
iP

2

2

)12(
Λ=  

2,1,0;2,10 === BAS jk
i

B

A
 

Theorem 2.2   The d-tensor fields of curvature of CΓ(N) are locally expressed in the shape: 
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By a straightforward computation we obtain the Ricci tensors and the scalars of curvature and, by 

consequence, we can write the Einstein equations. 

Theorem 2.3 With respect to the canonical metrical N-linear connection the Einstein equations for 

the space GL
2(n)

 endowed with the metric tensor )(),,( ),,(2)2()1( )2()1(

xeyyxg ij

yyx

ij γσ=  are given by: 
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Theorem 2.4  We have the following conservation law: 
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Corollary 2.1  If the nonlinear connection N satisfy the integrability conditions then the 

conservation law is: 
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3 Applications 

Let us consider the Liouville vector fields )2()1( ,zz  given by: 
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With respect to the canonical nonlinear connection N, these fields depend only on the 

Riemannian metric )(xijγ   and are defined by: 
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We present the complete calculation for the case of : 
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Proposition 3.1  The following results hold:        
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Proposition 3.2     The torsion d-tensor fields are: 
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)2,1,0,(0 == BAS jk
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A
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Proposition 3.3     The curvature d-tensor fields are: 
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Proposition 3.4     The Ricci tensors of curvature and the curvature scalars have the following 

expressions: 
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Proposition 3.5     The Einstein equations for the space endowed with this metric are: 
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Observation   We write the first equation in this shape in order to emphasize the relation between 

the Einstein equations of the space and the Einstein equations of the Riemannian space 

( ))(, xMV oj

n γ= . 
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1. Introduction 
In different branches of science (in thermodynamics, physics and mechanics) one assigns a 

different physical meaning to the concept of ``conservation laws". 

 n areas of physics related to the field theory and in the theoretical mechanics ``the conservation 

laws" are connected with a conservative physical quantity  or with a conservative object. (These are 

conservation laws that below will called ``exact".) 

 In mechanics and physics of continuous media the concept of ``conservation laws" is related to 

the conservation laws for energy, linear momentum, angular momentum, and mass that establish 

the balance between the change of physical quantities and external action. These are balance 

conservation laws.  

 In thermodynamics the conservation laws are associated with the principles of 

thermodynamics. 

 It turns out that there exists a connection between exact and balance conservation laws. It is 

just a connection that enables one to explain a causality of physical phenomena. (In 

thermodynamics such a connection is described by the principles of thermodynamics.) 

 These results have been obtained owing to the skew-symmetric differential forms that possess 

the evolutionary properties (and hence they were given the name evolutionary ones). 

 In present paper it will be shown that the closed exterior skew-symmetric differential forms, 

which describe exact conservation laws for physical fields (exact conservation laws), are obtained 

from the evolutionary forms that are assigned to the conservation laws for material media (to the 

balance conservation laws). From this it follows that material media generate physical fields, and 

this disclose the causality of physical phenomena. 

 The evolutionary forms arise under describing physical processes in material media. Unlike to 

the exterior forms, the basis of which are differentiable manifolds and manifolds with structures of 

any type (i.e. manifolds with closed metric forms), the basis of evolutionary forms is made up by 

deforming manifolds (with unclosed metric forms). The manifolds constructed of trajectories of 

material system elements are examples of deforming manifolds. 

 

2. The exact conservation laws 
Exact conservation laws are those that state an existence of conservative physical quantities or 

objects. Closed exterior differential forms correspond to exact conservation laws. 

 It is known that the exterior differential form of degree  p  ( p - form) can be written as [1] 
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p
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Here 
piia ⋅⋅⋅1
 are functions of variables piii x...,,x,x 21 , n  is the dimension of space, ∧  is the operator 

of exterior multiplication, ⋅⋅⋅∧∧∧ ,dxdxdx,dxdx,dx, kjijii1  is the local basis which satisfies the 

condition of exterior multiplication: 
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 The differential of exterior form pθ  is expressed as  
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[From here on the symbol ∑  will be omitted and the summation over double indices will be 

implied.  And besides, the symbol of exterior multiplication will be also omitted for the sake of 

convenience in account]. 

 From the closure condition of exterior form pθ  

0=pdθ                 (4) 

one can see that the closed exterior form  is conserved quantity. This means that it may correspond 

to the conservation law, namely, to some conservative quantity. 

 If the form is closed only on pseudostructure, i.e. this form is a closed inexact one, the closure 

condition is written as  

0=pθdπ                 (5) 

0=∗ pθdπ                 (6) 

where pθ∗  is the dual form. Condition (6) specifies the pseudostructure π .  

 From conditions (5) and (6) one can see that the form closed on pseudostructure is a 

conservative object, namely, this quantity conserves on pseudostructure. This can also correspond 

to some conservation law, i.e. to conservative object.  

 Thus one can see that the closure conditions of the exterior form are mathematical expressions 

of the exact conservation law. 

 The exact conservation laws are those for physical fields. 

 The closure conditions of exterior form, which are the mathematical expression of the exact 

conservation law, describe the differential-geometrical structure, namely, the pseudostructure with 

conservative quantity. The physical structures, which forms physical fields and corresponding 

conservation laws, are just such structures. 

 The mathematical principles of the theory of closed exterior forms, which correspond to 

conservation laws, lie at the basis of existing field theories describing physical fields. Gauge 

transformations of field theory are transformations of the theory of closed exterior differential 

forms. These are transformations that conserve the differential. From the closure conditions of 

exterior forms (condition (4) and conditions (5) and (6)) one can see that any closed form is a 

differential of the form of lower degree: the total one 
1−= pp dθθ                 (7) 

if the form is exact, or the interior one  
1−= p

π

p θdθ                (8) 

on pseudostructure if the form is inexact. Since the closed exterior differential forms are 

differentials, they are invariant under all transformations that conserve the differential. The unitary 

transformations ( 0 -form), the tangent and canonical transformations (1-form), the gradient and 

gauge transformations ( 2 -form) and so on are examples. Nondegenerate transformations are used 

in field theory. These are gauge transformations for spinor, scalar, vector, tensor (3 -form) fields. 

The exterior differential forms enable one to work out a classification of gauge transformations. 

 From the closure conditions for exterior forms, which describe the conservation laws, and from 

relations (7) and (8), which relate the forms of sequential degrees, the identical relations, being the 

identical ones of field theory, are obtained. The Poincare invariant, vector and tensor identical 

relations, the Cauchi-Riemann conditions, canonical relations, the thermodynamic relations, the 

eikonal relations and so on are examples of identical relations. In general form  identical relation 

can be written as 
p=d ππ θϕ                 (9) 

Below it will be shown a physical meaning of such a relation. 
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 It can be shown that the equations of existing field theories are those obtained on the basis of 

the properties of the exterior form theory. The Hamilton formalism is based on the properties of 

closed exterior and dual forms of the first degree, quantum mechanics does on the forms of zero 

degree, the electromagnetic field equations are based on the forms of second degree. The third 

degree forms are assigned to the gravitational field. 

 Thus, one can see that the exact conservation laws are those for physical fields. They are 

described by closed exterior differential forms. The closure conditions of exterior inexact form and 

of corresponding dual form are a mathematical expression of the exact conservation law and they 

are the equations for differential-geometrical structures. The physical strictures, which form 

physical fields, are just such differential-geometrical structures. 

 And here the questions arise of: (a) how are closed exterior forms, which reflect the properties 

of exact conservation laws, obtained; (b) what generates physical structures corresponding to exact 

conservation laws; and (c) what is responsible for such processes? 

 The mathematical apparatus of evolutionary differential forms, which correspond to the 

balance conservation laws (conservation laws for material media), enables us to answer these 

questions. 

 

3. The balance conservation laws 
Evolutionary forms reflect the properties of conservation laws for material system (medium). These 

are balance conservation laws for energy, linear momentum, angular momentum, and mass (they 

establish a balance between the variation of physical quantity and the corresponding external 

action). From the equations, which describe the balance conservation laws, the evolutionary 

relation in differential forms is obtained. {A material system is a variety of elements that have 

internal structure and interact to one another. As examples of material systems it may be 

thermodynamic, gas dynamical, cosmic systems, systems of elementary particles and others.} 

 The evolutionary differential forms are skew-symmetrical differential forms defined on 

deforming manifolds. 

 An evolutionary differential form of degree p  ( p -form) is written similarly to exterior 

differential form. But the evolutionary form differential cannot be written similarly to that 

presented for exterior differential forms (see formula 3). In the evolutionary form differential there 

appears an additional term connected with the fact that the basis of the form changes. For the 

differential forms defined on the manifold with unclosed metric form one have 

021 ≠⋅⋅⋅ )dxdxd(dx pααα . For this reason the differential of the evolutionary form ω  can be written as  

)p21

p1

p21

p1

ααα

αα

ααα

αα

p dxdxd(dxadxdxdxdadω ⋅⋅⋅+⋅⋅⋅= ⋅⋅⋅⋅⋅⋅     (10) 

where the second term is a differential of unclosed metric form being nonzero. Since the second 

term of the evolutionary form differential is nonzero, the evolutionary form differential cannot 

vanish. This means that every evolutionary form is an unclosed form. 

 That is, unlike to the exterior forms, which  are defined on the manifolds with closed metric 

forms, the evolutionary form cannot be closed. This specific feature of the evolutionary form gives 

rise to the properties differing from that of the exterior form. Such properties of the evolutionary 

form reflect the properties of the balance conservation laws. 

 Let us analyze the equations that describe the balance conservation laws for energy and linear 

momentum. 

 In the accompanying frame (this frame is connected with the manifold built by the trajectories 

of the material system elements) the energy equation is written in the form 

11
=А

ξ

ψ

∂

∂
                 (11) 

Here  ψ  is the functional specifying the state of material system (the action functional, entropy, 

wave function can be regarded as examples of the functional), 1ξ  is the coordinate along the 
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trajectory, 1A  is the quantity that depends on specific features of the system and on external energy 

actions onto the system. 

 In a similar manner, in the accompanying frame of reference the equation for linear momentum 

appears to be reduced to the equation of the form  

νν
=А

ξ

ψ

∂

∂
,      .,..ν=2               (12) 

where νξ  are the coordinates in the direction normal to the trajectory, νА  are the quantities that 

depend on the specific features of the system and external force actions.  

 Eqs. (11), (12) can be convoluted into the relation 

νµ
µ

µ ,1, == dξAdψ              (13) 

 Relation (13) can be written as 

ωdψ =                  (14) 

Here µ

µdξω=A  is the differential form of the first degree.  

 Since the equations of the balance conservation laws are evolutionary ones, the relation 

obtained is also an evolutionary relation.  

 Relation (14) was obtained from the equation of the balance conservation laws for energy and 

linear momentum. In this relation the form ω  is that of the first degree. If the equations of the 

balance conservation laws for angular momentum be added to the equations for energy and linear 

momentum, this form in the evolutionary relation will be the form of the second degree. And in 

combination with the equation of the balance conservation law of mass this form will be the form 

of degree 3 .  

 Thus, in the general case the evolutionary relation can be written as 
pωdψ = ,   3,2,1,0=p              (15) 

(The evolutionary relation for 0=p  is similar to that in the differential forms, and it was obtained 

from the interaction of energy and time).  

 As it will be shown below, from this relation, obtained from the equations of balance 

conservation laws, it follows the relation, which  contains the closed exterior form corresponding to 

the exact conservation law. 

 What are the properties and specific features of this relation? 

 The specific features of this relation are connected with the differential form pω . This 

differential form is an example of the evolutionary differential form, that is, this form is defined on 

the deforming manifold. 

 We will show that the manifold, on which the differential form  pω  is defined, is a deforming 

manifold, i.e. a manifold with unclosed metric form. 

 Let us consider relation (14), where µ

µdξω=A  (that is, 1p = ). The differential of this form 

can be written as βα
αβω dξdξKd = , where αβK  are the components of commutator of the form ω . 

The components of commutator of the form µ

µdξω=A can be written as follows: 

)
x

A

x

A
=(K

β

α

α

β

αβ
∂

∂

∂

∂
−               (16) 

(here the term  connected with the nondifferentiability of the manifold has not yet been taken into 

account). The coefficients of the form µ

µdξω=A  have been obtained either from the equation of 

the balance conservation law for energy or from that for linear momentum. This means that in the 

first case the coefficients depend on the energetic action and in the second case they depend on the 

force action. In actual processes energetic and force actions have different nature and appear to be 

inconsistent. The commutator built of the derivatives of such coefficients is nonzero. This points to 

the fact that the differential of the forms  is also nonzero. Thus, the form ω  proves to be unclosed.  
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 It turns out that the left-hand side of relation (14) involves the differential, which is a closed 

form, whereas the right-hand side involves the unclosed differential form, which cannot be a 

differential. Relation (14) proves to be not identical one. 

 What is a physical meaning of such a relation? 

 This relation obtained from the equations of the balance conservation laws involves the 

functional that specifies the material system state. However, since this relation turns out to be not 

identical, from this relation one cannot get the differential  dψ that could point out to the 

equilibrium state of material system. The absence of differential dψ means that the system state is 

nonequilibrium. That is, in material system the internal force acts. This leads to distortion of 

trajectories of material system. A manifold made up by the trajectories (the accompanying 

manifold) turns out to be a deforming manifold. The differential form ω , as well as the forms pω , 

appear to be evolutionary forms. 

 What properties does the evolutionary differential form, i.e. the differential form defined on 

deforming manifold, possess. 

 A deforming manifold has unclosed metric form because the metric form commutator, which 

describes the manifold deformation, is nonzero. That is, the metric form differential is nonzero. 

Since the metric form differential of nonzero value enters into the evolutionary form differential 

(see, formula (10)), this means that the evolutionary form differential cannot vanish also. That is, 

the evolutionary form, which is defined on deforming manifold, cannot become a closed form (in 

any physical process). 

 If to express the evolutionary form differential in terms of the commutator, the metric form 

commutator of the manifold metric form with nonzero value will enter into the evolutionary form 

commutator. For example, in commutator of the differential form µ

µdξω=A  the second term 

connected with the metric form commutator with nonzero value will arise (see, formula (16)). (This 

additional term describes the manifold torsion). 

 Since the differential form in the relation obtained from the equations of the balance 

conservation laws cannot be closed, this means that such a relation cannot become an identical 

relation. And since this relation is evolutionary one, it appears to be nonidentical selfvarying 

relation (a variation of one term in the nonidentical relation leads to variation of another term of the 

nonidentical relation and so on). 

 The selfvarying nonidentical relation has a physical meaning. This relation describes a 

selfvariation of the nonequilibrium state of the material system. 

 Selfvarying evolutionary relation possesses one more property of physical significance. Under 

selfvariations of the evolutionary relations it can be realized the conditions of degenerate 

transformation when from nonidentical relation the relation that is identical on pseudostructure is 

obtained. 

 If the transformation is degenerate, from the evolutionary form pω , which is unclosed, namely, 

0≠pdω , it can be obtained the differential form closed on pseudostructure. The differential of this 

form equals zero. That is, it is realized the transition 

0≠pdω   → (degenerate transform) →   00 == • pp ωd,ωd ππ  

The evolutionary relation on the pseudostructure π  takes the form 
pωψd = ππ                 (17) 

where the form pωπ  is closed on the pseudostructure.   

 The degenerate transformation it must correspond  vanishing of some functional expressions, 

such as Jacobians, determinants, the Poisson brackets, residues and others. Vanishing these 

functional expressions is the closure condition for a dual form. The conditions of degenerate 

transformation are connected with symmetries, which can be due to the degrees of freedom of 

material system and its elements. The translational degrees of freedom, internal degrees of freedom 

of the system elements, and so on can be examples of such degrees of freedom. The degenerate 



139 

transformation is realized as the transition from the accompanying noninertial coordinate system to 

the locally inertial system.  

 Since the form pωπ  is a closed form, this form is a differential of some differential form, and 

the relation (17) obtained turns out to be identical: in the left-hand and right-hand sides of this 

relation there are differentials.  This means that under the degenerate transformation from the 

nonidentical evolutionary relation it follows the identical on pseudostructure relation.  

 One can see that obtained identical relation (17) is a relation of the same type as identical 

relation (9) that contains closed exterior forms. 

 Transition from nonidentical relation (15) obtained from the balance conservation laws to 

identical relation (17) means the following. Firstly, an existence of the state differential ψdπ  (left-

hand side of relation (17)) points to a transition of the material system to the locally-equilibrium 

state. And, secondly, an emergence of the closed (on pseudostructure) inexact exterior form ψdπ  

(right-hand side of relation (17)) points to an origination of the physical structure, namely, the 

conservative object demonstrating a fulfilment of the exact conservation law. This conservative 

object is a conservative physical quantity (the form pωπ ) on the pseudostructure ( the dual 

form pω∗ , which defines the pseudostructure).  

 

4. Causality 
It has been shown that the closed exterior forms, which correspond to exact conservation law and 

describe physical structures forming physical fields, are obtained from evolutionary forms, to 

which the balance conservation laws for material systems correspond. This proves that material 

media generate physical fields. Thus, it is disclosed a determinacy of physical processes and 

phenomena. 

 Nonidentity of the relation obtained from the equations of the balance conservation laws relates 

to the fact that the evolutionary form, which enters into this relation, appears to be unclosed, i.e. the 

commutator of this form is nonzero. As one can see from formula (15), the commutator contains 

contributions from quantities, which describe different external actions onto material system. They 

cannot compensate one another because they have different natures (for example, force and power 

actions). Transition from nonidentical relation to identical one means that the quantity stored by 

commutator due to external actions onto material system and acting like internal force converts into 

a measurable quantity and this is accompanied by emerging physical structure. The emergence of 

physical structures in the evolutionary process reveals in material system as an emergence of 

certain observable formations, which develop spontaneously. In this manner the causality of 

emerging various observable formations in material media is explained. Such formations and their 

manifestations are fluctuations, turbulent pulsations, waves, vortices, creating massless particles 

and others. 

 Characteristics of the formations originated are defined by those of evolutionary forms and by 

the evolutionary form commutators, which depend on the properties of material system and 

external actions [2].  
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The Law of a Composition of Physical Velocities in Locally  

Anisotropic Finsler Space-Time 
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2/31 Str. Lobachevsky, Kazan, 420111, Russia 

E-mail: zaripov@mail.knc.ru 
 

The signal method of Poincare of clocks synchronization is considered and new transformations of a time 

interval and a spatial distance of local space-time are obtained. Four are found in essence various such as 

two-dimensional locally (flat) anisotropic Finsler geometries with two scalar parameters and some invariant. 

Group properties of the law of a composition of unidirectional physical anisotropic velocities of the arbitrary 

signals are investigated.  
 

1. Introduction 
To signal method of clocks synchronization in relativistic to mechanics it was executed 107 years in 

2005. For the first time this method has offered A. Poincare [1] by reviewing a problem of a 

simultaneity of distant events in an inertial system of a reference. Also A. Poincare [2] for the first 

time has considered a formalism of a four-dimensional space-time and has found all invariants of a 

Lorentz group. At last, G. Minkovsky [3] used A. Poincare's formalism and has offered local 

isotropic four-dimensional pseudoeuclidean space-time. The works of the French scientists are of 

great importance for relativistic mechanics and now are unduly belittled. It in spite of the fact that in 

1904 the Kazan Society Physics and Mathematics awarded A. Poincare Lobachevsky gold medal. 

N.I. Lobachevsky was the rector of the Kazan Imperial University and in 1826 for the first time has 

unclosed non Euclidean geometry [4]. In particular this geometry is realized in Fock three-

dimensional space of velocities [5]. A. Poincare and N.I. Lobachevsky stated, that physical 

phenomena can be described in terms of various geometries. On one of methods of expansion of 

pseudoeuclidean geometry the Finsler geometry which reference property is presence in local 

space-time of an anisotropy is grounded. We shall mark only monographies [6-13] where detailed 

reviews of examinations in this direction are reduced. The aim of the present work is more deep 

study of problems of a simultaneity of distant events in local Finsler space-time that allows to 

justify strictly physically Finsler structure of geometry and to find new transformations of time 

intervals and spatial distances between inertial systems of a reference. Here the case of two-

dimensional space - time is used.  
 

2. Definition of a simultaneity of distant events and an anisotropy of a speed of 

light 
Let's consider three events interdependent by a light signal in spatial points A and B local reference 

system. Light propagation in the systems takes place along a solid rod with physical length, equal to 

a spatial distance 
AB

dL . Observations of clocks in points A and B are physical times 
A

T  and 
B

T . 

Let from point A through an interval of time 
AdT

1
 the signal which through an interval of time 

BdT
2

 will arrive to point B is sent. Further the signal reflex from point B, through an interval of 

time 
AdT

3
 will arrive to point A. According to A. Poincare [1] for reference standard clocks 

synchronization it is necessary to definition the ration of a metric simultaneity of event in point A 

with event in point B in the middle of a time interval 
AA dTdT

13
− . Thus, we have a relation  

BAAB dTdTdTdT
2312

−=− ,         (2.1) 

which gives equality of unidirectional physical speed of light 
0

ccc
BAAB

==  along a solid rod. 

Thus the postulate about equality of scales of the distance measuring length of a solid rod in direct 

and inverse directions is fulfilled, and the experimental fact of a constancy of a light speed averaged 

ever closed paths is used 
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BAAB
dLdL = , =

−

+
=

AA

BAAB

dTdT

dLdL
c

13

0 AA

AB

dTdT

dL

13

2

−
.    (2.2) 

Unidirectional physical speed of light has isotropic and invariant magniture. 

According to G.Reichenbach and A.Grünbaum [14, 15] the events in a time interval 
AA dTdT

13
−  is topologically simultaneous events to event in point B. The definition of a metric 

simultaneity is determined convection by a select of the arbitrary event from topologically 

simultaneous events.  

Signal method of the clocks synchronization A. Poincare suggested for the first time, gives 

observable intervals of time in point A   

021
cdLdTdT

AB

BA −= , 
023

cdLdTdT
AB

BA += .    (2.3) 

We distinguish some cases. In the first case of a proper time interval in point B is defined by 

expression 

( ) ( )

( )( ).
2

1

0031

2

31

2

310

cdLdTcdLdTdTdT

dTdTdTdTdT

AA

AAAAB

+−==

=−−+=
     (2.4) 

Where used indexes are dropped. From (2.4) one gets form-invariant length elements  
222

0

2

0

2

0

2 dLdTcdTcds −== ,        (2.5) 

in local Michelson to a reference system. For a Riemann geometry with a signature ( )−−−+ ,,,  and 

length elements 

 
ji

ij
dxdxgds =2

          (2.6) 

we have  














+=

α
α

00

00

00 g

dxg
dxgdT ,        (2.7) 

βαβα
αβ 










+−= dxdx

g

gg
gdL

00

002
,        (2.8) 

where 
2dLdLdL == , tcx

00
=  and values of indexes ( )3,2,1,0=i ( )3,2,1=α . In half-

geodesist coordinates we have 0
0

=αg , 1
00

±=g . For a determinant validly an inequality 

0<
ij

g . 

For space-time of Minkowski in Galilean coordinates we have values  

dtdT = , ( ) 22222 dzdydxrddL ++==
r

.      (2.9) 

Here the interval of physical time coincides with an interval of coordinate time and the physical 

length is length of a local radius-vector ( )2rd
r

 with coordinates ( )dzdydx ,, . Physical velocities of 

the arbitrary signals are equaled coordinates velocities. In a case from (2.7) and (2.8) these 

equalities are not fulfilled.  

In the second case we shall consider a Riemann geometry variety with the length elements (2.6) 

having a signature ( )++++ ,,, . Then we have relations  

( ) ( )

( ) ( ) ,
2

1

2

1

2

0

222

3

2

1

2

31

2

310

cdLdTdTdT

dTdTdTdTdT

AA

AAAAB

+=



 +=

=−++=

     (2.10) 
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222

0

2

0

2

0

2 dLdTcdTcds +== ,        (2.11) 

βαβα
αβ 










−= dxdx

g

gg
gdL

00

002
.       (2.12) 

And for a determinant validly an inequality 0>
ij

g . 

In the third case we shall put 
BAA dTdTdT

231
==  and we get 

2

00

00

00

2

0

22

0

2

0

2

0

2

0
,


























+====

α
α

g

dxg
dxgcdTcdTcdsdTdT B

. (2.13) 

The geometry variety with a determinant 0=
ij

g  has a signature with some zero values. 

One more case of Riemann geometry variety with a signature ( )−−++ ,,, demands separate 

reviewing. 

The most general connection between time intervals will be noted so  

0
231123312

=ε+ε+ε BAA dTdTdT ,        (2.14) 

where 
12
ε , 

23
ε  also 

31
ε  there are constant elements of an antisymmetric time matrix of transition 

between events. At limit a point B  we have 

( )=ε+ε+ε
→

BAA

BA
dTdTdT

231123312
lim ( ) 0

1312312
=ε+ε+ε AdT .   (2.15) 

As 
AdT

1
 there is the arbitrary value we obtain 

0
312312

=ε+ε+ε .          (2.16)  

Thus, we have two independent parameters.  

From (2.14) and (2.16) it is discovered the following equality  

013

31

23

23

12

12

c

dLdTdTdTdTdTdT
AB

AABAAB

=
ε

−
=

ε

−
=

ε

−
,    (2.17) 

from which we shall receive values of the unidirectional anisotropic physical and a average speed of 

light 

12

0

ε
== +

c
cc

AB
, 

23

0

ε
== −

c
cc

BA
, 

13

0
0

2

ε
=γ=

c
cc ,     (2.18) 

ссс

ε
=−

−+

211
, 

ссс

211
=+

−+

, 

13

2312

ε

ε−ε
=ε ,      (2.19) 

where ε  there is a scalar parameter of a time anisotropy and γ - scalar parameter describing "index 

of refraction" for light. For average speed over closed paths the limit 1lim
0

0

=
→∞

cc
c

should be 

fulfilled. Unidirectional physical speed of light has non-isotropic and non-invariant magniture. The 

case with 0
2312

=ε=ε  corresponds to a absolute simultaneity of classical physics in which the 

signal method of Poincare misses. 

Observable time intervals in a point A  are equaled 

+−= cdLdTdT
AB

BA

21
, −+= cdLdTdT

AB

BA

23
.    (2.20) 

The value += cc
AB

 defines a speed of light sent of a point A  in a point B , and += cc
AB

 - a 

speed of light sent from a point B  in a point A  of a solid rod. It means, that in a point A  the speed 

of light sent from a point A  in an opposite direction from a point B  is not defined. Similarly, in a 

point B  the speed of light sent from a point A  in an opposite direction from a point A  is not 

defined. 
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At 2
13

=ε  and 1
2312

=ε=ε  from considered general nonstandard of clock synchronization 

we have standard of clock synchronization on Poincare. Transformations of an grief of space-time 

coordinates do not eliminate a physical anisotropy of a speed of light. The coordinate anisotropy of 

a velocity 
0dxdxα

 in a Riemann geometry variety with (2.6) for isotropic geodesic is eliminated 

by transformations of a grief of space-time coordinates if dT  there is a total differential. As against 

works [16-18] where are reduced for the first time a relation (2.14) for instants time, here we have a 

relation (2.14) for time intervals. 
 

3. Types of Finsler geometries 
Let's consider transformations of a time interval and a spatial distance at transition between local 

systems ( )K  and ( )K ′ . In a system ( )K ′  we have speeds of a light   

12

0

ε′
=′

+

c
c , 

23

0

ε′
=′−

c
c , 

13

0
0

2

ε′
=γ′=′

c
cc ,       (3.1) 

ссс ′
ε′

=
′

−
′

−+

211
, 

ссс ′
=

′
+

′
−+

211
, 

13

2312

ε′

ε′−ε′
=ε′ .      (3.2) 

For obviousness we shall accept, that the element of a solid rod is located along the positive 

direction 
1′dx ( )032 == ′′

dxdx . Consider system ( )K ′  which moves relative to systems ( )K . The 

physical length of a device of the element of a solid rod located along the positive direction 
1′dx  is 

absolute value XdXd ′=′ . The direction 
1′dx  coincides with a direction 

1dx .  

Let's consider the first case. The transformation can be defined by the ""k  coefficient method 

[18]. Let us write the relations 

( ) ( ) ( ) ( )+++ −=′′−′′ cdXdTcckcXdTdcc
21

0

21

0
,    (3.3) 

( ) ( ) ( ) ( )−−− +=′′+′′′ cdXdTcccXdTdkcc
21

0

21

0
.    (3.4) 

In other cases of a disposition of a element of a solid rod in systems ( )K  and ( )K ′  in the relations 

(3.3) and (3.4) we obtain other values a speed of light also. Coefficients ( ) 21
cck ′

+  also 

( ) 21
cck ′′

−  describe the Doppler Effect in direct and inverse directions. From (3.3) and (3.4) one 

can get the following relations  

,
111

111

22

0

22

0
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−−=

=
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′′
−′′











′
−

′
−′

′
′

−+−+
+

−+−+−
−

dX
cc

dTdX
cc

dT
c

c
k

Xd
cc

XdTd
cc

Td
c

c
k

    (3.5) 

+

−

+

−
−+ −

+
=

′′−′

′′+′
′

cdXdT

cdXdT

cXdTd

cXdTd
kk .       (3.6) 

At 0=′Xd  also 0=dX  we have, accordingly, dTvdX +=  and TdvXd ′′−=′ − where ++ = vv  

and −−
′=′ vv  there are the relative unidirectional velocities of systems. From (3.6) one gets the 

equality  

−−

+−

++

−+
−+ ′′−

′′+
=

−

+
==′

cv

cv

cv

cv
kkk

1

1

1

12
,      (3.7) 

to define correlation between velocities  
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1111
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At ++ == uudTdX  and ++
′=′=′′ uuTdXd  we obtain equality  
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−
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Consider nonstandard clock synchronization at ε′=ε . From (3.9) we have the law of a 

composition of the dimensionless unidirectional anisotropic velocities  

( ) ccvu
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′′ε−+′′
=
















′
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++

+++++++
211

2
o ,    (3.10) 

which set forms Abelian group.  

Determinants direct and inverse transformations from relations (3.3) and (3.4), are equaled 

−+
′= kkA  and kkA −

′=′ ( )1=′AA  . Taking into account (3.7), we have values  

kAk =+ , kAk ′=′− ,        (3.11) 

where ( )+= vAA , as well as ( )−′=′ vAA , has group property  

( ) ( ) ( )+++
′= vAuAuA .        (3.12) 

Using the law of a composition as (3.9) and equality (3.12), we obtain the equation  

( )( ) r
dv

Ad
cvcv 2

ln
11 −=+−

+
−+++ .             (3.13) 

The invariant parameter r  can depend on invariant values +c  and −c . Integrating (3.13) under 

condition of ( ) 10 =A , we have expression ( )+vA , transformations and quadrate of form-invariant 

metric function in the following types of local Finsler geometries.  

Type I ( )
2312

ε≠ε . 
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Type II ( )0
23122312

=ε′+ε′=ε+ε . 
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153 

( )( ) +++ α−=′ dTvdXvAXd , +++ −=α cv1 ,       (3.19) 

( )


































′
−+−−























′
+−

α
=′

+++

+

++
+

+

+

ccc

v
dX

cc
vdT

vA
Td

1111
1

2
,    (3.20) 

( )22

0

2 2
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−
= cdXdT

cdXdT

rdX
cF .    (3.21) 

Value ( )+vA  and transformations to type II imply from formulas (3.13), (3.15)-(3.17) in type I it is 

formal at −+ −= cc . 

Type III ( )
2312

ε≠ε . 
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Type IV ( )0
23122312

=ε′=ε′=ε=ε . 

( ) ( )rvvA 2exp −= ,          (3.26) 

( ) ( )vdTdXvAXd −=′ , ( ) dTvATd =′ ,      (3.27) 

( )[ ] 22

0

2 2exp dTdTdXrcF = .        (3.28) 

Formulas for type III are obtained on the results of work [18]. Formulas for type IV are obtained 

from relations (3.18)-(3.21) in type II at 0
2312

=ε=ε . At ε=ε′  and cc =′  the first three types 

correspond for defined values r  and c  to three types of local Finsler geometries with an indicatrix 

of a constant value of the curvature, surveyed in work [19].  

Consider a case with ( )−+= ccrr ,  for which of proper time interval in type I has a form 

( ) ( ) 2

1

2

1

0

rr

cdXdTcdXdTdT
−

−

+

+ +−= .      (3.29) 

The equality dTdT =
0

 corresponds to Galilean geometry and takes place at 0
2312

=ε=ε  if 

relations are fulfilled 
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1
,  
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c
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1
.    (3.30) 

From (3.30) we obtain invariant parameter 

ε−=
+

−
=

−+

−+

cc

cc
r .         (3.31) 
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Hence, the proper time interval will become  

 

( ) ( )
( )( )

( ) ( )( ) ( )
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     (3.32) 

The quadrate of Finsler metric function will be noted so  

( ) ( )( ) ( ) 2
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1
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2

02 22
dTc
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cc
dTccdTdT

c
F

cccccc
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−+−++−−+++

+
==

ε
= . (3.33) 

In work [13], [19] and [20] the anisotropy of a physical velocity of light (
0

ccc ≠≠ −+ , 

2

0
ccc =−+ , ε−=r ) for quadrate of Finsler metric function (3.33) without coefficient 

13
2 ε is 

considered. The case of an anisotropy of a coordinate speed of light with ε−=r  is explored in 

[21]. 

For a case 0=r  in type I we have 

( )( ) ( )( )−+
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−+ +−
+

==
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= cdXdTcdXdTc
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2
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. (3.34) 

In a case 0≠r  also 
0

ccc == −+  we shall receive  
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Generalization of expression (3.35) with the account (1.6) - (1.8) for a four-dimensional space-time 

is 
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As against work [22] in (3.36) is not a four-dimensional vector 
i

ν  with 0=νν i

i
. Generalization of 

results of work [22] on a case of an anisotropy of a coordinate speed of light is given in [32]. It is 

necessary to note, that adding to surveyed transformations of two ( ) cvAdYcYd +=′′  more 

and ( ) cvAdZcZd +=′′  do not reduce in replacement dLdX →  in the metric functions. 

In Galilean coordinates we have quadrate of Finsler metric function  
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2
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r
r
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−
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= ,     (3.37) 

demanding separate reviewing. 
 

4. The law of a composition of physical unidirectional anisotropic velocities  
Let in systems the invariant anisotropy of speeds of a light signal is fulfilled. (

1212
ε′=ε , 

2323
ε′=ε  

and 
1313
ε′=ε ) From (3.14)-(3.16) we have direct and inverse transformations in type I  
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where the relative velocities satisfy to equality 

−+−+
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′

−
ccvv

1111
.         (4.5) 

The law of a composition of unidirectional absolute anisotropic velocities looks like  

( ) 2211

2

cvu

cvuvu
vuu
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+++ ′ε−+

′ε−+′
=′= o .       (4.6) 

Let's consider a third system ( )K ′′ which moves along the positive direction with a velocity +w  

and +
′z  concerning systems ( )K  and ( )K ′ , accordingly. Then using transformations between ( )K ′′  

and ( )K ′ , we shall finally receive the law of a composition of the absolute unidirectional 

anisotropic velocities 

( )
( ) 2211
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vzw
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The set of absolute velocities forms Abelian group with the commutative law of a composition of 

elements of group ++++
′=′ zvvz oo .  

For the law property of an associativity is fulfilled  
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The unity element of group is discovered from the formula  
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+
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EvccvE
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o .      (4.9) 

Thus, the unity element corresponds to a value 0=+v . 

From the law of a composition  
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expression of an inverse element follows 
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Elements of group are selfconjugat. 

Using (4.5)-(4.11) we shall write out some equalities 
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( ) ( )−+− −=− cvc o , +++ = cvc o ,       (4.14) 
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The parameter of an anisotropy ε  demonstrated difference of an inverse device 
1−

+v  from 

opposite ( )+− v . Speeds of light +c  also −c  have no inverse elements 
1−

+c  and 
1−

−c  by virtue of 

violation of a side condition in (4.10). Therefore they do not enter a set of velocities and (4.14) 

there is a formal equaility. From (4.6) we get the law of a composition 
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vuu
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==′ o .     (4.21) 

Also it is represented in direct transformations through velocities +u  and +v . In inverse 

transformations, according to (3.15), the equality −
−
+

′−= vv 1
is valid. From (4.6) we have relations  
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In work [20, 21, 23-25] the law of a composition in form (4.7) from the various points of view was 

considered.  

The law of a composition of the unidirectional anisotropic velocities (4.7) for type I one gets 

from equality (3.9). In case of types II and III we have equalities 
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from which the following laws of compositions imply 
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+++
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cvu

cvuvu
vuu o ,       (4.25) 

( ) 2211

2

cvu

cvuvu
vuu

++

++++
+++ ′ε−+

′ε−+′
=′= o .       (4.26) 

For type IV we have the traditional law of a velocity addition in classical physics 

vuu +′= .           (4.27) 

At 0=r  also 0=ε  in types I, III and IV we have laws of a composition of velocities in flat 

geometries to which the postulate parallel is maintained [26]. 
 

5. Conclusions 
In work the locally anisotropic (flat) Finsler geometry with two scalar parameters 

( ) 2
23120

ε−ε=ε cc  and ( ) 2
23120

ε+ε=cc , depending from elements of a time matrix of 

transition between events, and also from an invariant r  is considered. Four types are found in essence 

various such as two-dimensional Finsler space-time. Group properties of a composition of equally 

directional anisotropic velocities of the arbitrary signals are explored. The anisotropy of physical speeds 

of light is not eliminated by any transformations of a grief of space-time coordinates, than the obtained 

new transformations of a time interval and a spatial distance differ from some known transformations 

for coordinate representation of an anisotropy [25, 27-32]. To a problem of a simultaneity work [33] is 

devoted to the review of such approaches. It is necessary to note also and attempt of the experimental 

detection of the relative anisotropy of unidirectional velocities of light and neutrons [34]. 
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The Dynamic Universe the ory [1,2] describes space as the surface of a 4-sphere expanding in zero-
energy balance betw een t he energies of motion a nd gravitation. Such an ap proach re-est ablishes 
Einstein’s or iginal view of space as the surface of a four di mensional sphere but converts the 
Einsteinian spacetime to dynamic space in absolute coordinates. That is how the description of space 
and time most probably would have been formulated if m odern atomic clo cks, GPS satellites and  
supernova observations — or at least Edwin Hubble’s observatio ns — had been available in early  
1900’s. In  su ch an approach the rest energ y of m atter appears as the energy  mass has due to the 
motion of sp ace in the direction of the 4-radius of  the structure and the velocity  of light i n space 
becomes fixed to the velocity  of space in the fourth dimension. Motion in space beco mes related to 
the motion of space and the local refer ence at rest to  the local energy  system the where the motion 
has been obtained. Accordingly, a local state of rest appears as a property of an energy system rather 
than the state of an inert ial observer. Pred ictions obtained are supported  b y experim ents fro m 
physical experiments at Earth laboratories and satellite systems to distant cosmological observations. 
Also, recent observations on the magnitude versus redshift of supernova explosions give  strong 
support to th e closed dy namic space approach without  an inclusion of dark energ y or adjustable 
density parameters. 

1. Introduction 

In early 1900’s when the theory of relativity was formulated the view of the structure of space 
was quite li mited. The e xpansion of space had no t been detect ed and the galactic structures wer e 
unknown. It was natural t o think space as stati c entity without  a specific center or a universal  
reference at rest. When Einstein in 1917 published his view of the cosmological structure of space as 
the “surface” of a 4-sphere, he needed the fa mous cosmological constant to prevent the collapse o f 
space into singularity [3].  

In static space the interp retation of the observe d constancy  of the velocity  of light led to  
spacetime concept with time-like fourt h dim ension and variable distance and tim e coordinates  
characterized as proper time and proper distance. Dilated time was explained as a consequence of the 
velocity the object relative to the observer, a nd thr ough t he curved spaceti me, a property of the 
spacetime geometry. 

Allowing spherically closed space contract and expand in a zero-energy balance of motion and 
gravitation the Einsteinian tim e-like fourth dimension becom es replaced by a purely metric 
dimension in the direction of the motion of space al ong the 4-radius of the structure. The center of 
symmetry and the reference at rest for the expansion and contraction of spherically closed space is in 
the center of the 4-sp here. Expansio n of spheri cally closed spa ce does not create motion within 
space; the momentum of the expansion a ppears only in the direction of the 4-radius perpendic ular to 
all space directions. The related energy  of motion appears as  the rest energy of matter in space. In 
kinematic sense, homogeneous expansion of the 4-sphere is observed as recession of objects in space 
at a velocity proportional to their distance from the observer. 
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2. Zero-energy balance in a 4-sphere 

In sphericall y closed space a  natural  soluti on is not static s pace but sp ace subject to 
contraction and expansion. Dynam ics based on a zero-energy  principle shows the rest e nergy of 
matter as the energy of motion m ass has due to the  contraction or expansion of space in the fourth 
dimension, in the direction of the 4-radius. As a consequence of the conserv ation of the primary 
energy created in the contraction-expansion process the velocity of space in the fourth dim ension set 
the upper limit to velocities obtainable in space. Th e “great mystery” of the equality  of the rest 
energy and the gravitational energy  of all mass in  spac e is  direct indicatio n of the zer o-energy 
balance of motion and gravitation in space [4]. 

In contraction started from the stat e of rest at infinity in the past motion is gained against 
release of gravitational energy , in expa nsion motion works again st gravitation resulting in gradual 
deceleration of expansion until rest at infinity (see Figure 1). 

 

 
Figure 1. Energy buildup and release in spherical space. In the contraction phase, the velocity of 

space in the direction of the 4-radius increases due to the energy gained from loss of gravitation. In 
the expansi on phase, the velocity  gr adually d ecreases, while the ene rgy of  motion ga ined in 
contraction is returned to gravity. 

 
A detailed analy sis of t he intrinsic form s of the energies of motion and gr avitation in a 

homogeneous 4-shere allows the expression of the zero energy condition as 

2
0

4

" 0GM MM c
R

Σ
Σ − =  (1) 

where G is the gravitational constant, c0 the velocity in the direction of the radius R4 of the 4-sphere, 
and M” = 0.776 ⋅ MΣ the mas s equivalence of the total mass MΣ in space. The factor 0.776 com es 
from the integration of the gravitational energy of the 4-sphere. Equation (1) links the velocity of the 
contraction or expansion along the 4-ra dius R4, to the gravitational constant, the total mass in space, 
and the 4-radius as 

Energy of gravitation 

Energy of motion 

time 

contraction expansion 

– ∞ ∞ 

∞ 

– ∞ 

Никита
Typewritten Text
161



 

4
0

"GM
c

R
= ±  (2) 

Applying a mass density ρ  ≈ 0.55 ⋅ρc, where ρc is the Friedmann critical mass density , 4-
radius R4 = 14 ⋅109 light years (present estimate of th e Hubble radius), and the gravitational constant 
G = 6.7 ⋅10−11 [N m2/kg2] equation (2)  gives c0 = 300 000 km /s. Conservation of energ y in  
interactions in space requires that c0 is the maxi mum velocity  obtainable in s pace, which confirms  
the interpretation of c0 as the velocity of light in homogeneous space. 

When solved for tim e t since singularity, the expans ion velocity, and the veloc ity of li ght in 
space obtains the form 

1/3
4 2 "

3
dR GMc dt t

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =  (3) 

Time t from singularity can be expressed as 

42
3

Rt c=  (4) 

which means that for Hubble radius 14 billion light years [corresponding to Hubble constant H0 = 70 
[(km/s)/Mpc]  the age of the expanding universe since singularity is 9.3 billion years.  

3. Unified expressions of energy 

Following the zero-energy principle in the buildup of mass centers in space the velocity of free 
fall of mass becomes related to the local bary center. For conserving the energy of motion related to  
the expansion of space, local space becomes tilted resulting in  a reduction in the m omentum in the 
local fourth dimension and the locally  available rest  energy of matter. Accordingly, the velocity of  
free fall in space i s obtained against a reduction of  the local  velocity  of space in th e fourth 
dimension, which also means that t he velocity  of light is a function of  the tilting angle and, 
accordingly, the gravitational potential and the distance from a local mass center (see Figure 2).  

Due to the nature of the rest energy  of  matter as the energy  of motion due to the m otion in  
space, mass should not be considered as a for m of energy  but, instead, the substance for the 
expression of energy . Such an appr oach leads to unified expressions of energy and relates all for ms 
of the energy of m atter to the energy m atter has at rest in hypothetical hom ogeneous space 
expanding at velocity c0. 

 
Figure 2.  As a co nsequence of the conservation of the pr imary energies of motion and gr avitation, the 

buildup of a mass center in space be nds the spherical space locally causing a tilting of  space near the mass 
center. The local i maginary axis is  alwa ys perpendicular to local  spa ce. As a consequence, the local  
imaginary velocity of space, and accordingly the local velocity of light, is reduced in tilted space. 
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In a detailed analysis of free fall it can be shown that in space expanding at ve locity c0 in the 
direction of t he 4-radius t he kinetic en ergy obtained in free fall  by conserving the t otal energy of  
motion is 

( )0 0 0 0( )kin ffE c m c c c m c cδ= − = Δ = Δp  (5) 

where c0 is the imaginary velocit y (the velocity in the fourth dimension) of space in the non-tilted 
space. 
 Buildup of kinetic energy by conserving the total energy at a constant gravitational potential, 
where the imaginary velocity of space is unchanged the expression of kinetic energy obtains the form 

( )0 0 0( )kin effE c m m c c m c cδ = − = Δ ⋅ = Δp  (6) 

which is equal to the expression of kinetic energy in the theory of special relativity.  
The source for the increased mass (th e buildup of effective mass) may be Coulom b energy 

which, by appl ying the vacuum permeability μ0 rather than the vacuu m permittivity ε0, obtains the 
form 

1 2 0
EM EM0 04

q qE c c m c c
r
μ

π
= − = −  (7) 

where the mEM is denoted as the mass equivalence of electromagnetic energy with the dimensions of 
kilogram [kg]. “Free fall”  of a charge particle from distance r1 to  r2 in Coulom b field rele ases the 
energy  

( ) ( )( )1 2 0
0 0 01 2

1 2

1 1
4EM EMEM EM

q qE c c c m m c m c c
r r

μ
π

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

Δ = − = − = Δ  (8) 

which now obtains the form of mass release from the Coulomb field to the object accelerated. 
We can extend the unified expression of energy  to the energy  of electromagnetic radiation by 

first solving the minimum dose of electrom agnetic radiation as the  energy of radiation em itted by a 
single oscillation c ycle of  a unit charge in a dipol e. Following t he standard procedure of  solving  
Maxwell’s equations, and again, by  appl ying the va cuum permeabilit y μ0 rather than the vacuu m 
permittivity ε0, we obtain 

( )
22 2 4 4

3 20 0 0
0 0

16 2 2
12 3

e z f zPE e c f
f cfλ

χμ π π μ
π λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= = =  (9) 

which essentially has the form of Planck’s equation E = hf.  
In dynamic space moving at velocity c in the fourth dimension, a point source like an em itting 

atom can be  considered as  a dipole in the fourth di mension. In one cy cle, a point charge at rest in  
space moves the distance  of a wavele ngth in the fourth dim ension perpendicularly  to all space 
directions. Accordingly, for a point emitter all space directions are in the “normal plane” of a dipole, 
and the energy of one cycle obtains the form 

( )3 2 0
0 0 0 0 01.1049 2 hE e c f hf h fc c c m c cλ λπ μ

λ
= ⋅ = = = =  (10) 

where mλ is the mass equivalence of electro magnetic ra diation with dim ensions of kil ogram [kg]. 
The factor 1. 1049 needed to match equation (9)  to the precise value of t he Planck constant consists 
of the ratio c0/c (c is the local velocit y of light on the Earth) and a possible geo metrical factor 
resulting from  the application of Maxwell’s equa tions in a dipole in th e fourth di mension. 
Accordingly, the Planck constant can be expressed as 

( )
3 2

0 0
34

34 2

1.104905316 2

1.104905316 5.99695618 10

6.626068765 10 kgm /s

h e c

f

π μ
−

−

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

= ⋅

= ⋅ ⋅ ⋅

= ⋅

 (11) 

It is important to note that the expansion velocity of space (the velocity of light in hypothetical 
homogeneous space) is a h idden factor in the Planck constant. It is therefore necessary  to define the 
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intrinsic Planck constant h0 = h/c which allows the u nified format  of the energ y of a quantum of 
electromagnetic energy (the energy of one cycle of radiation emitted by a single electron transition in 
a point source) 

0
0 0 0 0 0 0

hE hf h f c cc m ccλ λλ
= = = =  (12) 

where m0λ is the mass eq uivalence of a quantum  with dim ensions of kilo gram [kg]. By  appl ying 
equation (11) the fine structure constant obtains the form 

2
30

3 2 3
0

1 17.297352533 10
1371.104905316 2 1.104905316 4

e
e

μα
π μ π

−= = ⋅
⋅ ⋅

 (13) 

which show the fine structure constant as a pur ely mathematical, dim ensionless constant without 
connections to any  physical constants. Application of the fine structure constant to the Coulom b 
energy between unit charges q1 = q2 = e in equation (7) the Coulomb energy obtains the form 

( ) ( )

2
0 0

0 0 0EM 0 EM 04 2
e hE c c c c m c c

r r
μ α
π π

== − = −  (14) 

which dem onstrates the close connection betw een the Coulom b energy  and the energ y of 
electromagnetic radiation. 

As a consequence of the conservation o f energy in free fall in the buildup of m ass centers in 
space the local velocit y of light was found t o be a function of the local gravit ational potential. In a 
detailed analy sis taking i nto account the chain of inbuilt cascaded gravitational sy stems (mass 
centers) the local velocity of light in the n:th gravitational frame can be expressed as 

( )0
1

1
n

i
i

c c δ
=

= −∏  (15) 

where the gravitational factors δi can be expressed as 

2
0 0 0 0

"
"
i i i i

i
i i i

M GM GM GMR
M r c c r c c r rcδ δ

δ = = = ≈  (16) 

where Mi is t he central mass of the  local sy stem i, and ri is the  distance to t he bary center of the  
system. 

Conservation of energy in the buildup of kinetic energy in local energy systems in a constant  
gravitational potential was expressed via the transfer of mass from the potential energy of the system 
to the object accelerated. Such an  energ y transfer occurs through the buildu p of m omentum in a 
space directi on. As a part of the conservation of the zero energy balance in space the buildup of 
momentum in space reduces the momentum of the object in the fourth dim ension. This is de scribed 
as a reduction of the internal mass of the moving object so that the product of the effective mass and 
the internal mass is conserved at any  velocity. Internal mass reduces the momentum balancing the 
gravitational force by  all m ass in space on the moving m ass o bject. In other words, the overall 
conservation of energy  means that: “Expression of energy through m otion in space reduc es the  
energy the object expresses in the fourth dimension”. 

As a demand of the energy balance of an object moving in a local energy system n the internal 
mass of the object obtains the form 

( )
21 nI nm m β−=  (17) 

where m is the rest mass and βn the velocity of the object in the local system. The rest mass is subject 
to similar reduction due to the m otion of the local sy stem in its parent sy stem and, furt her, due the 
motions of the parent systems in their parent systems as  

1
2

0
1

1
n

i
i

m m β
−

=
= −∏  (18) 

where m0 is the rest mass of the object at rest in hypothetical homogeneous space.  
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By applying equations (15) and (18) the rest energy  of mass m in a local energy frame can be 
expressed as 

( ) ( )0

1
2 2
0

1
1 1 1n

n

i i
i

E c mc mc δ δ β
−

=
−= = − −∏  (19)  

As a conseq uence of the conservation of the to tal energy  in clos ed dy namic space the rest  
energy of mass objects appear a function of  the gravitational state and m otion of the  object. Motion 
of a local energy  s ystem reduces the r est energy  available for mass within the local sy stem (see 
Figure 3). 

 
Figure 3. The rest energy of  an obj ect in a local frame is determ ined by the inte rnal energy of  the local  
frame in its parent frame. The internal energy is the imaginary component of the rest energy. The system of 
cascaded energy f rames relates the i nternal energy of  an object in a l ocal f rame to the rest energy of  the 
object in hypothetical homogeneous space. 

 

4. The effect of motion and gravitation on characteristic frequencies 

By applying the intrinsic Planck constant defined in equation (12) the standard non-relativistic 
expression of energy states of electrons i n a hydrogen-like atom solved from Schrödinger’s equation 
can be expressed in form 

2 24 2 2
0

, 02
0 28 e eZ n

e Z ZE m cc E
n nh

μ α⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  (20) 

Extragalactic space 

Accelerator frame 

Milky Way frame 

Ion frame 

Solar frame 

Earth frame 

( ) ( ) ( ) 2
0 1 1XG XGI XG IE E δ β= − −  

( ) ( ) ( ) 21 1MW MWI MW I XGE E δ β= − −  

( ) ( ) ( ) 21 1S SI S I MWE E δ β= − −  

( ) ( ) ( ) 21 1E EI E I SE E δ β= − −  

( ) ( )
21 AI A I EE E β= −  

( ) ( )
21 IonI Ion I AE E β= −

( )rest MWE

( ) ( ) 0 00 0I restE E c mc= =  
Hypothetical homogeneous space 

( )rest XGE

( )rest SE

( )rest EE

( )rest AE

( )rest IonE
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where Ee is t he rest energy of electron in the nucleus energy frame. With reference to equation (19)  
the energy  states of  hydrogen like atoms are functions of the gravitational state and motion of th e 
atom. By  ap plying equati ons (19)  and  (20) Balm er’s form ula for the characteristic freque ncies of 
hydrogen like atoms obtains the form  

( )
( )

( ) ( )
21, 2 2 2

2 21, 2 0 1, 2
10 0 01 2

1 1 1 1
2

nn n
e i in n n n

i

E
f Z m c f

h c hn n
α δ β

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

Δ
= = − = − −∏  (21) 

where factors δi and βi define the state of gravitation and motion of the atom 

( ) ( )

2
2

02 20 1, 2 0
01 2

1 1
2n n ef Z m c

hn n
α⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

= −  (22) 

where c0 is the expansion velocity  of space and me(0) the m ass of electron at rest in hypothetical 
homogeneous space. As shown by equations (21) and (22) the characteristic frequency of a specific  
transition in an atom is a function of both the motion and gravitational state of the atom. 
 

Equation (21) combines the coordinate time scales in different frames like the Earth 
Centered Inertial Frame applied in satellite systems and the Solar Barycenter Frame applied 
in observations in the solar system and extends the coordinate time structure to laboratory 
frames on the rotating Earth and anywhere in space.  
 

Because the expansion velocity of space is subject to gradual decrease  with th e expansion of 
space, the reference frequency f0(n1,n2) in equation (22) declines with time as 

( )
( ) ( )

2
0 1/32 1 3

2 20 1, 2
01 2

1 1 0.803
2

e
n n

m
f Z GM t

hn n

α
−

Σ
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= − ⋅  (23) 

where G is the gravitational constant and MΣ the total mass in space. As shown by  equation (21) the 
characteristic frequency is directly proportional to the local velocity of light, c, which means that in 
local measurements based on atomic clocks, the velocity of light is observed as constant.  

When solved for characteristic wavelength, Balmer’s formula obtains the form 

( )
( )

( )0 1, 2
1, 2

21, 2

1
1

n n
nn n

n n
i

i

c
f

λ
λ

β
=

= =
−∏

 (24) 

where 

( )
( )

0
0 1, 2

0 1, 2
n n

n n

c
f

λ =  (25) 

Accordingly, the characte ristic wavele ngth is subject to increase due to the m otion of the 
emitting atom but it is not affected by the gravitational state (or the velocity of light). 
 

The reduction of the frequencies of atomic clocks in motion is a consequence of the 
energetic state, the state of gravitation and motion (velocity) of the clock. The frequency is 
neither a function of the velocity of the clock relative to an observer nor a function of the 
acceleration the clock. There is no place for the Lorentz transformation or the equivalence 
principle in the Dynamic Universe. 

 
All energetic states in space are related to the reference at rest in hypothetical 

homogeneous space. The unified expressions of energy apply in all local frames in space and 
manifest the zero energy principle as a universal law of nature. There is no place for the 
principle of relativity in the Dynamic Universe. 
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5. Cosmological appearance of spherically closed space 

As a consequence of the identical velocities of  space along the 4-radius and electro magnetic 
radiation in s pace, the optical distance D, which is the distance tr aveled by light from  object A1 to 
object B in space (in the tangential direction), is equa l to the corresponding change of the radius (see 
Figure 4). 

 

 
 

Figure 4.  Pr opagation of elect romagnetic r adiation fr om 
object A1 in Universe state R4(1) to object B in Universe state  
R4. 

 

Figure 5.  Redshif t as a functio n of o ptical distanc e ver sus 
Hubble r adius ( D/RH) according to the predictions of  the linear 
Hubble law, the general theory of r elativity (27), and the Dy namic 
Universe (26),  res pectively. The GR prediction is ca lculated for 
q0 = 0, q0 = 0.5, and q0 = 1. For H0 = 70 [(km/s)/Mpc], distance 
RH = R4 = 14 ⋅109 l.y. 

 
The wavelength of electromagnetic radi ation propagating in expanding space is subject to an 

increase in direct proportion to the expa nsion of space. In spherically  closed space the Hubble law 
obtains the form 

4

4 4
1

1
D RDz e e

R D R
α α= − = =

−
 (26) 

The maximum optical distance of an  object in space is D = R4. Figure 6 illustrates t he 
development of the optical path and th e redshift from  objects at different R4 ra dii of s pace (s ee 
Figure 5). 

The optical a ngle θ subtended b y an ob ject can be expr essed as the ratio of a standard rod rs 
and the optical distance. When normalized to (rs/R4), we get 

DU(rod)

4

1
s

z
r R z

θ +=  (27) 

(see Figure 6). As a major difference to the standa rd cosmology model, in the Dynamic Universe the 
orbital radii of local gravitational sy stems are s ubject to the expansion of space. The r adii of 
planetary systems as well as the radii of  galaxies expand in direct proportion to the expansion of the 
4-radius R4. Accordingly, out of the 3. 8 cm annual increase of the Earth to Moon distance 2.8 cm 
comes from the expansion of space and only 1 cm from the tidal effects.  

The observation angle of expanding objects obtains the Euclidean form  

DU(exp.obj.)

4

1
sr R z

θ
=  (28) 

The prediction of equation (28) is strongly supported by observations of angular sizes of radio  
sources (see Figure 7). 
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Figure 6. Normalized observation angle of a standard rod as a function of 
redshift in the DU model and in the standard m odel with expansion p ara-
meter q0 as q0 = ½ and q0 = 0. The reference line 1/z s hows the observation 
angle of the standard rod in Euclidean space. For objects expanding in space, 
the prediction for the observation angle obtains the Euclidean 1/z form. 

DU: DU(rod) DU(exp.obj.)

4 4

1 1;
s s

z
r R z r R z

θ θ+= =  

Standard cosmology:  
( )

( ) ( )
2
0F

0 0 0

1

1 1 1 2s H

q z
r R q z q q z

θ +
=

+ − − + +
 

 

 
Figure 7. Comparison of equation (28) with the predictions of the standard cosmology model for various 

q
0
 values (without evolution) and the tired light model [ A. Sandage: The Deep Universe, original data fo r 

the median angular sizes (arcsec) and redshifts for radio-sources by Kapahi’s (1987)]. The prediction given 
by equation ( 28) is the str aight li ne with E uclidean appearance showing a consi derable match with 
observations.  

Dilution of t he rest en ergy of matter with the decreasing velocit y of light i n expanding space 
means that the rate  of all i nternal atomic processes slows down with the expansion. Also the rate o f 
radioactive decay  decreases with the expansion, wh ich means that the results of radioactive dating 
shall be corrected for higher decay rate in the past. As demonstrated in Figure 8, a dating result of 14 
billion years with a constant decay  rate is reduced  to about 9 bil lion years when taking into account 
the decreasing decay rate. The reduction solves the presently recognized problem of the age of oldest 
stars which look like exceeding the age of expanding space. 

 
 

Figure 8. Accu mulation of decay products according t o 
the standard model with a constant decay rate and the D U 
model with a decreasing decay rate.  
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Perhaps the m ost striking recent cos mology obser vation is the magnitude versus redshift of 
supernova explosions [5,6,7]. When interpreted with the standard cosmology model, the observations 
meant that the expansion of space is accelerating instead of decelerating as could be expected due the 
work done against gravitation. For m otivating the acceleration, dark energy  in the for m of Ωλ has 
been added to the expression of the magnitude in the standard model  

( )
( ) ( ) ( )20

0

1 15 log 25
1 1 2

z

m

c z
m M dz

H z z z z λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+
= + +

+ + Ω − + Ω
∫  (29) 

In the Dynamic Universe the expression of the magnitude obtains the form  

( ) ( )0 5 log 2.5 log 1m m z z= + + +  (30) 

which, without free parameters, agrees with observations at least as well as the standard model with 
optimized Ωm, Ωλ, and H0.  The excellent fit of equation (30) means strong support to the zero energy 
balance of closed spherical space (see Figure 9) [8]. In equation (30) the onl y parameter is the 
reference magnitude m0, whereas in the standard cosm ology prediction (29) there are, additionall y, 
two density parameters and the Hubble constant as parameters to be optimized. 
 

 
 

 
 
 

Figure 9.  Di stance modulus 
μ = m – M, vs. redshift for Riess et 
al’s gold dataset and t he data from 
the HST.  The triang les represen t 
data obt ained vi a gro und-based 
observations, an d t he ci rcles 
represent dat a obt ained by  t he 
HST.  Th e optimum fit for th e 
standard c osmology e quations i s 
shown in red, and the optimum fi t 
for the equation  
 m  = m0 + 5 log z + 2.5 log (z +1) 
is shown, slightly below, in blue. 

 

 
In spherically closed space the backgrou nd radiation appears as radiation pr opagated trough a 

full 360 ° pa th aroun d th e expanding  sphere. With re ference to equation  (26) the red shift of  
background radiation is 

2 1 534.5z e π= − =  (31) 

The 4-radius  of space at the tim e of the em ission of the background radiation w as 
R4(0) = R4/535.5 ≈ 26 million light years, which occurred about 750 000 years after the singularity.  

6. Summary 

Some im portant ph ysical and cosm ological c onsequences of the zero energy  balance in  
spherically closed space can be summarized as follows: 

 
– universal, absolute time applies to all phenomena in space 
– a local state of rest is a property of a local energy system instead of a property of an inertial 

observer 
– the rest energy of matter is the energy of motion mass possesses due to the motion of space 

in the fourth dimension; conservation of the total rest energy in interactions in space relates 
any state of motion in space to the state of rest in hypothetical homogeneous space  
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– the buildup and release  of the rest energy of m atter can be des cribed as a zero energy 
process from infinity in the past through singularity to infinity in the future 

– the characteristic emission and absorption frequency due to an electron transition in ato mic 
objects is a function of th e velocity  and grav itational potential of the ato m in  the local  
energy system and the parent systems; as a consequence coordinate time scales in cascaded 
gravitational frames and proper tim es in sy stems of motion can all be linked to universal 
absolute time 

– electromagnetic resonators  can be  studied as closed energy  sy stems; as  an i mplication 
Michelson–Morley type experiments in moving frames show zero result 

– precise predictions for Shapiro-delay, perihelion advance of planetary orbit and the bending 
of light path near mass centers can be expressed in closed mathematical form 

– annual Dopp ler of pulsars, the Roemer–effect  and  the aberration of starlig ht get their 
natural solutions 

– the radius of local gravitational systems expand in direct proportion to the expansion of the 
4-radius of space 

– distant space is observed in Euclidean geometry (e.g. the angular sizes of radio sources) 
– prediction derived for the magnitude versus re dshift of a standard  emission source gives a 

perfect fit to recent supernova observations without an assumption of dark energy [8] 
– the age of the expanding space obtains the form t = 2/3 R4/c  
– age estimates obtained by radioactive dating are reduced due to the higher decay  rate in the 

young universe (the decay rate is inversely proportional to t1/3) 
– the expansion of space continues to infinity ; the energy of m atter, material, an d radiation 

diminishes in the course of the expansion un til it becomes zero at infinity, thus completing 
the cycle of observable physical existence 
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Any Physics theory is stated through the basic communication system.  However, by means of a theorem, it 
can be proved that this system is contradictory; this theorem has similarities with Gödel’s inference which is 
the basis for his theorems proof. Thus, a least contradictory physics theory can be stated only on the basis of 
a claim for minimum contradictions. According to previous work this physics describes a Minimum 
Contradictions Aether-Everything and it  is compatible, under certain simplifications, either with Newtonian  
Mechanics or Relativity Theory or  QM.  Purpose of this paper is to present the basic points of the previous 
work and to prove the basic statements required for a Minimum Contradictions Physics of Aether-
Everything. This work is funded by EU and Program Arximedes II. 

 

1. Previous Work [1-10] 
From Aristotle it is known that the way in which we communicate and prove various statements 
obeys the rules of classical logic i.e.  the propositional and the predicate logic[1,2,3,4]. For the 

purposes of this paper Classical Logic is denoted as Principle I  or IP . 

Apart from these rules Aristotle also stated the causality principle according to which for everything 
a reason-cause is needed.  Leibniz expanded the causality principle and claimed more generally that 
something is valid if it can be logically proved by something else that is valid. So, Leibniz’ 
Sufficient Reason Principle could be written in the following form[1,2,3,4]: 

Principle II ( IIP ): “No statement is valid if it cannot be logically proved through some valid 

statements different from it.”  

We name logic  Λ   the system which includes  principles I and II i.e.;   

 III PP ⋅≡Λ  

It can be proved the following: 
Theorem I:  “ Any system that  includes  logic Λ  and  a statement  that  is not theorem of logic Λ  

leads to contradiction.”  

In previous works efforts have been made to prove this Theorem; purpose of this paper is to prove it 
in a more integrated way. 
It can be shown that the anterior-posterior axiom  is not theorem of Λ . Thus, the following can be 

proved: 
Statement I: “ Any system that includes logic Λ  and the anterior-posterior axiom leads to 

contradiction.”  

where the anterior – posterior axiom is stated as follows. 
Anterior – Posterior Axiom: 

a. There is a physical state named Anterior. 

b. If there is Anterior then there is a sequent different state named Posterior. 

Our basic communication system includes logic Λ  and the anterior-posterior axiom; in fact, in our 

language for everything we seek the reason of its power ( IIP ); we put a phrase after another phrase, 

a word after another word e.t.c. (anterior – posterior axiom).  Thus according to Statement I it is 
proved that this basic communication system is contradictory. However, we notice that Statement I 
cannot be stated because it is based on the basic communication system which, according to 
Statement I itself, is contradictory.  Thus,  

 

Statement I imposes silence.  When we communicate, we use a hidden claim according to which 
"what is accepted as valid is what includes the minimum possible contradictions" since the 
contradictions cannot be vanished[4].  According to this hidden claim we obtain a logical and an 
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illogical dimension.  In fact, through this axiom we try to approach logic (minimum possible 
contradictions) but at the same time we expect something illogical since the contradictions cannot 
be vanished.   
The systems of axioms we use in Physics include the communication system and, therefore, their 
contradictions are minimized when they are reduced to the communication system itself; because of 
theorem I further axioms - beyond the ones of logic Λ - cause further contradictions.   
Therefore, we have minimum contradictions in Physics when it is based only on the basic 

communication system, i.e. on logic Λ  and on the “anterior-posterior axiom” .   
In order that such physics be valid, a unifying principle is needed, since everything, i.e. matter, 
field, and space-time, needs to be described in anterior-posterior terms.   
Thus, in a first sight, for a least contradictory physics we can make the following statement: 

 
Statement II: Any matter space-time system can be described in anterior–posterior terms. 

It is noted that time implies the existence of anterior and of posterior; space does, too.  If I say 
10cm, I mean the existence of anterior-posterior measuring states corresponding to 1,2,3….10cm  
Therefore, the existence of anterior and posterior is the condition for space and time to exist and 
vice-versa.  Thus, because of Statement II, for a least contradictory physics we can state the 
following statement: 
 
Statement III: Any matter system can be described in space-time terms.   

Since everywhere there is space-time and not something else, Space-Time-Everything can be 
regarded as Matter-Aether.  A matter system, in general, has differences within its various areas.  
This means that a matter system, in general, is characterized by different rates of anterior - posterior 
(time) within its various points.  Since space is also locally affected by the local rate of anterior-
posterior, it can be expected to deform due to different rates of anterior-posterior. This means that 
time can be regarded as a 4th dimension which implies Lorentz transformations and in extension a 
relativistic theory[1,2,3,4]. 
 In a second sight, taking into account the above-mentioned, and applying the claim of the 
minimum contradictions, we conclude that Matter-Space-Time-Everything-Aether can have logical 
and contradictory behavior at the same time; this can be valid only if space-time is stochastic. This 
is in contrast with the GRT; according to A.Pais, Einstein had said:  
“I consider it quite possible that physics cannot be based on the field concept; i.e., on continuous 

structures. In that case nothing remains of my entire castle in the air, gravitation theory included, 

and the rest of modern physics”[5,6].  
According to a previous work [7], statement III in combination with the claim for minimum 
contradictions leads to a Minimum Contradictions Physics of Aether-Everything.  This physics can 
imply the principles of QM, and under some simplifying hypothesis (continuity of space-time), it 
can imply the GRT; of course without this simplifying hypothesis, it is in contrast with the GRT.  
On this basis, the hypothesis of the Quantum Space Time [8] can be mentally verified. The 
hypothesis of the quantum space-time  i.e. of the unified space-time-matter-field, is based on the 

unification of the physical meaning of the notions which derive either from the GRT or the QM. 
According to the GRT, a particle field consists of a particle mass and a spacetime  continuum which 
surrounds this mass. According to the QM, a particle field is described by means of a De Broglie 
matter wave, which includes the notion of a particle mass. Therefore, the following question arises: 
is an infinitesimal part of a field spacetime or is it an  area which is described by a matter wave? If 
we want to achieve the unification mentioned, the following principle should be valid[7]:  
"Any infinitesimal spacetime  can be regarded as a matter wave". 

We may notice that this principle is compatible with Statement III on condition that space time is 
stochastic. 
Basic tool for minimum contradictions physics description is the Hypothetical Measuring Field 
(HMF)[7,8].   
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As Hypothetical Measuring Field (HMF) is defined a hypothetical field, which consists of a 

Euclidean reference space time, in which  at every point 0A - ),( tr
r

- the real characteristics of the 

corresponding – through deformity transformations -  point  A  of the real field exist.  

In a HMF, we define as mean relative space time magnitude sr the ratio of the mean real 

infinitesimal space time magnitude ds  to the corresponding infinitesimal magnitude 0ds  of  the 

reference space time: i.e. 0/ dsdssr = .  This can apply to any magnitude as follows : 

α) Relative time 0/ dtdttr =  , 

where dt is an infinitesimal time of comparison at a given position of the HMF.  

b) Relative length in a direction  n
r

   0/ nnn dldllr =   , 

where   d nl  is  an  infinitesimal  length  of  comparison  in  a  direction n
r

 and at a given time of the 

HMF. 
Concerning the notion of time we have the internal time of an infinitesimal space time element and 
the sensible time which expresses an irreversible passage from an earlier to a posterior. According 
to the spirit of this work internal time of an infinitesimal space time element is equivalent to its 

energy; it can apply both to (g) space-time and to (em) space-time.  Sensible time is closed to the 

notion “arrow of time” and it expresses a passage from (g) to (em) space-time[3,7]; see more in the 
Appendix A. 
With the aid of the HMF minimum contradictions aether-space-time geometry can be defined by 
means of an equation system defining a Ψ   wave function[7,8]; this geometry derives from the 
distribution of the properties of a flat relativistic space-time based on the probability density 

),( trP
r

of Schroendinger relativistic equation; the validity of this equation can be proved.  Aether-

space-time as a whole has both gravitational (g) and electromagnetic (em) dimensions; the (g) and 
the (em) space-time coexist and interact.   The electromagnetic (em) space-time is a space-time 
whose all magnitudes are considered imaginary and behave exactly like the gravitational (g).  
Minimum Contradictions Aether Everything Equations are shown in Appendix A[3,7,10]. 
Minimum contradictions aether physics can be the basis for explanation of laws and of various 
phenomena that cannot be explained through a classical approach [3,7,8,9,10]. Thus, forces 
unification can be achieved, arrow of time, electric clusters stability, cold fusion, asymmetric 

capacitor propulsion can be explained. It is shown that Minimum Contradictions Aether Physics 
leads to chaotic self-similar quantum matter space-time systems[8,10].  
All these are based on two statements (Theorem I and statement I) proving that the basic 
communication system is contradictory and on the claim for minimum contradictions. Thus it might 
be constructive a question to the scientific community of whether these statements proof, which 
constitutes the main part of this paper,  is valid or not. 
 

2. Proof of Theorem I and of Statement I 
2.1  Symbols 

For the purpose of this paper we use the symbolic logic not only through the frame of the 

propositional  and  predicate logic, but  through  the frame of logic Λ . Thus we have: 
 

Principle I ( IP ):  The symbols of Classical Logic are used[11,12]. 

Principle II ( IIP ): This principle which expresses Leibniz’ Sufficient Reason Principle[13] can be 

stated through the following statements. 

IIaP :   ),( ppprov~ Λ             (1) 

This Principle states that it is not valid that statement- or set of statements- p  can prove itself on 

the basis of logic Λ  i.e. on the basis of a system including  the classical logic IP  and the principle 

IIP . 
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IIbP :   ),( pprovp ℘⋅℘⇒ Λ            (2) 

This Principle states that if p is valid then statement-or set of statements- ℘ is valid so that p can 

be proved by means of ℘ through logic Λ . 

 Applying Classical Logic we have the following property of logic Λ . 

),(),(),( rpprovrqpovqpprov ΛΛΛ ⇒⋅           (3) 

i.e.:   if p proves statement-or set of statements- q  (through Λ )  and  p  proves statement-or set of 

statements- r  , then p  proves r . 

Notice: 

),( BAprovΛ   is not a simple logical proof of  B  through  A ; it implies that: 

),(~ AAprovΛ  

i.e. A   can not prove itself. 
Thus Pythagorean Theorem denoted as P  can be proved by means of Euclidean Axiom denoted as  
E   i.e.: 

),( PEprovΛ  

However  we have: 

),(~ EEprovΛ  

i.e. E  cannot be self-proved and therefore is not a priori valid. 
 

2.2 Theorem I: “ Any system that  includes  logic Λ  and  a statement  that  is not theorem of logic 

Λ  leads to contradiction.”  

Proof: 

We feel that logic Λ  is valid, but we don’t know a priori whether it is valid or not.  When we 
already speak logically it means that we have decided to communicate and we cannot but, most 

generally, think -according to IP - that: 

Λ∨Λ ~  (4) 
which means that either logic Λ  is valid or logic Λ  is not valid.  So, our consideration takes the 
widest credibility. Therefore, we can look into the following cases: 
 
2.2.1. Logic Λ  is non valid.  
It is obvious that if a system includes Λ  this system is contradictory since it must be valid  Λ  and 

( Λ~ ) at the same time.            
2.2.2.    Logic Λ  is valid.   

If  ΛΝΛΛ RRR ,..., 21  are the statements-reasons for Λ  validation, then, since any proof requires Λ , 

we will have that Λ⇒Λ⋅ΛΝΛΛ RRR ,..., 21 .  Since Λ⇒Λ , we conclude that Λ  is valid due to Λ  

itself, and does not require any further reason.  This is not in contrast with principle II, since in this 
case, Λ is regarded as valid, due to a hypothesis (case 2.2.2 instead of 2.2.1) .   
We consider the system: 

pqp ′⋅Λ≡⋅⋅Λ≡Π              (5) 

We symbolize as cΠ  the system  Π  when it is complete  that is when the validity of qp,  is due to  

cΠ   itself.  According to IP  we have: 

cc Π∨Π ~                 (6) 

As long as Π  is valid according to IIbP  it must be provable.  Thus we will have. 

0~ Π∨Π c                 (7) 

that is either Π  is complete ( cΠ ), or Π  is open ( 0Π ) that is qp,  are provable  not through Π .  

Thus we have the following cases: 

2.2.2.a.      cΠ  (Π  is complete) 

In this case qp,  must be provable through qp,,Λ .  Because of principle IIbP  we will have: 
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),(),( pqprovpprovp ΛΛ ∨Λ⇒           (8) 

),(),( qpprovqprovq ΛΛ ∨Λ⇒            (9) 

By hypothesis there is a statement of Π  which is not theorem of Λ ; let be p  this statement.  Thus 

we will have: 

),(~ pprov ΛΛ               (10) 

Thus, because of statements (9,10,11) we obtain: 

),(),(),(),( qpprovpqprovpqprovqprovqp ΛΛΛΛ ⋅∨⋅Λ⇒⋅    (11) 

both terms of right part express impossibility; in fact applying statement (3) we have: 

),(),(),( pprovpqprovqprov Λ⇒⋅Λ ΛΛΛ         (12) 

i.e. if  Λ  proves q  and q  proves p  then Λ  proves p ;  this is in contrast with statement (10).  

Working in the same way we have that : 

),(),(),( qqprovqpprovpqprov ΛΛΛ ⇒⋅         (13) 

which is in contrast with Principle IIaP . 

Thus, because of statements (10,11,12,13) and since  Λ  is by hypothesis valid we have: 

.contrqpc ⇒⋅⋅Λ≡Π              (14) 

where by the term  .contr  the existence of contradiction is symbolized.  Thus because of statement 
(14) we can state the following : 
 

Statement IV:  “ If logic Λ  is by hypothesis valid, then any system that includes this logic Λ  and a 

statement  that  is not a theorem of logic Λ  cannot be complete and consistent at the same time.” 

2.2.2.b.    0Π  (Π  is open-non complete) 

According to principle II( IIP ), Λ and  pqp ′≡⋅   must be provable through some valid statements 

different from them. These statements- reasons must be concrete final valid statements ;  if there are 
not concrete final valid statements then there is not proof for p′  validity and this in contrast with 

IIP . As was mentioned, Λ is by hypothesis valid.   

According to IIP  it is valid that: 

),( pprovp ′℘′⋅℘′⇒′ Λ             (15) 

where  ℘′  is the set of statements-reasons for p′ validity.  The system:   

p′⋅℘′⋅Λ              (16) 

 must be complete and consistent since it includes all related to  p′  finally  provable 
statements.   This system includes p′  and therefore  p ; thus according to statement I this 

system leads to contradiction; i.e.: 
.contrp ⇒′⋅℘′⋅Λ              (18) 

Taking into account principle IIP   we obtain:  

.contrpp ⇒′℘′Λ⇒′Λ≡Π            (19) 

Therefore, in general, the system Π  leads to contradiction regardless of whether it is complete or 
not;  thus taking into account what was mentioned in case 2.1 and statement (19) we can state 
Theorem I  since it is valid without any restriction forΛ .   
 

2.3  Statement I:  “ Any system that includes logic Λ  and the anterior-posterior axiom leads to 

contradiction.”  

Proof: 

We correspond numbers 1,2,…,x  to various sequent states mentioned in the Anterior – Posterior 

Axiom.  By xS  is denoted a state which corresponds to number x. 

Because of  the Anterior – Posterior Axiom we have: 

)~()( 1+⇒∀ xx SSx             (20) 
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i.e.  if  xS  is valid then no other state is valid and therefore state 1+xS   is not valid as well. 

)()( 1+∃⇒∃⇒∀ xxx SSSx           (21) 

i.e. if xS  is valid then xS  exists; according to Anterior – Posterior Axiom if xS  exists then 1+xS  

exists as well. 
Because of statements (20) and (21) we obtain: 

))(~()( 11 ++ ∃⋅⇒∀ xxx SSSx           (22) 

The 2nd part of statement (22) is not always consistent; in fact 1+∃ xS  implies that it is possible for 

1+xS  to be valid which is in contrast with the statement "~" 1+xS . In extension the 1st part of 

statement (22) and therefore the Anterior – Posterior Axiom is not always consistent. Thus, the 

Anterior – Posterior Axiom is not compatible with Classical Logic i.e. with principle IP ; in 

extension this axiom is non compatible with logic Λwhich includes principle IP . Therefore we can 

state that the Anterior – Posterior Axiom is not theorem of Λ . 
Applying Theorem I for systems including the Anterior – Posterior Axiom we obtain Statement I. 
 

3. Gödel’s Work 
Gödel’s Theorem can be stated in the form of the following  statement [14,16]: 

 
Statement V: “A consistent system including Peano’s arithmetic cannot be complete”. 

It is noted that this statement was proved on the basis of the following: 
 Gödel’s Hypothesis: “There is an algorithm that permits the derivation of only true statements”.   

Of course  this hypothesis is arbitrary. According to Hillary Putnam, Gödel’s second 
incompleteness theorem states that if a system ‘S’ of formalized mathematics – that is, a set of 
axioms and rules so precisely described that a computer could be programmed to check proofs in 
the system for correctness – is strong enough for us to do number theory in it, then a certain well-
formed statement of the system, one which implies that the system is consistent, cannot be proved 
within the system.  [15]. As Putnam noticed, this Gödel’s theorem had been misinterpreted; 
statement V  has not been proved in spite of efforts made by Church, Schröter and others [17]. 
Roger Penrose investigated the 2nd Gödel’s theorem and, taking into account the fact that it is not 
completely valid in the form of Statement V, concluded that[16]: 

 
Conclusion I: There is a part of our thinking which cannot be computational; this part could be 

investigated by laws of physics. 

There are doubts that there is a possibility for non-computational thinking able to be investigated by 
the laws of physics to exist [15]; however, Penrose’s conclusion completely takes into account what 
exactly has until now been proved [16].  Thus, if we were to prove Statement V and more generally 
statement IV, theorem I and statement I, we should find another way beyond Gödel’s work; this is 
the subject of this paper. 
It is noted that  statement IV can be regarded as a generalized case of Gödel’s theorem [14];  this 
theorem requires in order to derive Aristotlean logic (Mathematica Principia) and axioms that are 
not theorems of this logic (Peanno’s axioms); besides,  statement IV requires the Sufficient Reason 

Principle ( IIP ) which has similarities with Gödel’s hypothesis mentioned. 

It is also noted that Statement I has similarities with Gödel’s inference which is the basis for his 
theorems proof.  In fact according to Gödel’s work and to J. Barkley Rosser Theorem there is a type 
G  (Gödel type) which is provable only on condition that G~  is provable as well [14]; one can see 
similarities between Peanno’s axioms and the anterior posterior axiom as it is stated in this work. 
 

Appendix A [3,7,10] 
1. Minimum Contradictions Aether-Everything Equations 
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A minimum contradictions space-time-aether field in general, behaves locally as a particle-space-
time field; if we put:  

2222 / ∇−∂∂= ct�  

the following equations are valid. 
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where α  is the fine structure constant, gΨ , g
emΨ  are the gravitational and the electromagnetic 

space-time wave functions, which are identical with equivalent local particle Ψ  functions, and 
),( tr  is a point  of the hypothetical measuring field (HMF). Eqs. (A.1) describe Schrödinger’s 

relativistic equations. 
Eq. (A.2) describes the energy  conservation principle. 
Eq. (A.3) describes the momentum conservation principle. 
Eqs. (A.4, A.5) describe the gravitational acceleration of (g) and (em) space-time at point ),( tr .  

Eqs(A.6, A.7) describe the mean relative time and the mean relative length in a direction n
r

 of (g) 
space-time; this can be extended to the (em) space-time. 
It is noted that the electromagnetic (em) field for the same reasons as the (g) does, is described with 
the aid of an electromagnetic (em) hypothetical measuring field through electromagnetic 

coordinates ),(
emem

tr .  However the (em) HMF coexists with the (g) HMF while ),(
emem

tr  

corresponds to ),( tr  through a scale so that:  

αi
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∂

∂
    )4,3,2,1( =i            (A.8) 

If ),(
emem

tem rΨ  is the (em) space-time wave function we define as function ),( tg
em rΨ  a function 

for which is valid that: 

),(),( tt g
emem rr Ψ=Ψ

emem
           (A.9) 

This is the reason why  spacetime as a whole i.e. Minimum Contradictions Aether Everything can 
be described by means only of coordinates ),( tr of (g) space-time.  

Eqs. (A.2, A.3) describe any kind of energy and momentum interactions between the (g) and the 
(em); on this basis we can get useful information for explaining gravielectric phenomena.   
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2. Conservation Principle – Notion of Time Flow 

In a closed system regarded as a whole, the energy conservation principle can be applied as follows:  

=+ −gemg EE  constant            (A.10) 

where gemem EiE −=  and the dash ( ‾ ) indicates the mean value.  

If the closed system of Eq. (A.10) is the Universe and the constant is zero, we have another point of 

view for the creation and the evolution of Universe; it can be proved that ↓⇒↑ gg EV , where  

gV  is volume which contains energy gE ; thus, the expansion of Universe implies a continuing 

irreversible conversion of gE  into gemE −  and - as was mentioned in the text (previous work) -  

because of equivalence of energy and time [3,7,10] an irreversible conversion of (g) into (em) time 
which can be regarded as related to the arrow and the flow of sensible time [18].  
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We pay attention to the inconsistency in the derivation of the symmetric electromagnetic energy-momentum 

tensor for a system of charged particles from its canonical form, when the homogeneous Maxwell’s 

equations are applied to the symmetrizing gauge transformation, while the non-homogeneous Maxwell’s 

equations are used to obtain the motional equation. Applying the appropriate non-homogeneous Maxwell’s 

equation to both operations, we have revealed an additional symmetric term in the tensor, named as 

“compensating term”. Analyzing the structure of this “compensating term”, we suggested a method of 

“gauge renormalization”, which allows transforming the divergent terms of classical electrodynamics 

(infinite self-force, self-energy and self-momentum) to converging integrals. The motional equation obtained 

for a non-radiating charged particle does not contain its self-force, and the mass parameter includes the sum 

of mechanical and electromagnetic masses. The motional equation for a radiating particle does not yield any 

“runaway solutions”. It has been shown that the energy flux in a free electromagnetic field is guided by the 

Poynting vector, whereas the energy flux in a bound EM field is described by the generalized Umov’s vector, 

defined in the paper.  

 

1. Introduction 
The problem of infinite electromagnetic (EM) mass of the electron and self-forces of charged 

particles has continued to be one of the central issues of classical electrodynamics during more than 

a century [1-10]. One of the reasons, explaining such a great attention to these problems, is their 

persistence in quantum electrodynamics [8, 9]. The simplest method to avoid the infinite EM mass 

of an electron is to add a compensating infinite negative mass. However, such a method does not 

overcome all difficulties, in particular, the “runaway solutions” (e.g., a “self-acceleration” of 

radiating electron). In the present paper we omit a review of these problems, insofar as we will 

apply a primary modification of the energy-momentum tensor to remove an inconsistency, which 

seems not to have been revealed before. 

It is known (see, e.g. [5, 6]) that the motional equation for an EM field with the Lagrangian 

density πµν
µν 16FF−  gives the following expression for the canonical energy-momentum tensor 

of the electromagnetic (EM) field  

ππ γα
γα

µν
γ

νγµµν
164 FFgFATEM +∂−= ,       (1) 

where µννµµν AAF ∂−∂=  is the tensor of EM field, µA  is the four-potential, µνg  is the metric 

tensor, and µ, ν=0…3. In order to transform Eq. (1) into a symmetric form, the gauge 
transformation 

µνγ
γ

µνµν ψ∂+→ EMEM TT  (where µγνµνγ ψψ −= ),      (2) 

should be applied. Choosing  

πψ γ
νµ

γ
µν 4FA=              (3) 

and writing 

( )[ ] ( )[ ] ππψ γ
νγµ

γ
νµγ

γ
µνγ 44 FAFA ∂+∂=∂ ,      (4) 

we can transform the tensor (1) to the symmetric form  

( )( )441 γα
γα

µν
γ

νµγµν π FFgFFTEM +−= ,       (5) 

if we recognize that  

0=∂ νγ
γ F                (6) 
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(the field equation in the absence of source charges). Eq. (5) represents the conventional expression 

for the tensor of EM field.  

Further, it is known that the energy-momentum tensor for matter has the form 

τ

νµ
µν

d

dx

dt

dx
mcTM = ,             (7) 

where m is the mass density, and τ is the proper time. Then the total energy-momentum tensor is 
defined as the sum of Eqs. (5) and (7): 

( )ππ
τ

γα
γα

µνν
γ

µγ
νµ

µνµνµν 164 FFgFF
d

dx

dt

dx
mcTTT EMM +−+=+= . (8) 

The energy-momentum conservation law requires that the four-divergence of µνT  should vanish: 

( ) ( )[ ] 0=+∂ ν
µ

ν
µ

µ EMM TT .           (9) 

Using the Maxwell’ equations γµννγµµνγ FFF ∂−−∂=∂ , and 

cj
c

j
F ν

ν
γν

γ π
π

4
4

=∂             (10) 

( νj  is the four-current), we find the motional equation in the form 
γ

νγν jFdtdvmc =2

,            (11) 

where νv  is the four-velocity. 

Eqs. (1)-(11) briefly reproduce the derivation of the energy-momentum tensor and motional 

equation from [5, 6], which are widely accepted. Then applying Eq. (11) to a single isolated charged 

particle we obtain the spatial components of this equation in the form 

cBvqEqdtpd
rrrr

×+= ,            (12) 

where q is the charge of particle, p
r
 is its momentum, v

r
is the velocity, and E

r
, B

r
 are its own 

electric and magnetic fields. Furthermore, the requirement 00 =∂ µ
µT  gives the following energy 

balance equation: 

0=⋅+⋅∇+∂∂ jEStu
rrr

,            (13) 

where  

π822 BEu += , ( ) π4BEcS
rrr

×=         (14), (15) 

are the energy density of EM field and the Poynting vector of the particle, correspondingly. The 

term jE
rr

⋅  in Eq. (13) describes the self-action of charged particle.  

In this paper we intend to resolve the problems of self-action and infinite self-energy, applying a 

procedure of renormalization of the EM energy-momentum tensor under its proper gauge 

transformation. First of all we pay attention to a lack of logic in the derivation of Eq. (5) and further 

calculation of the four-divergence of µνT . Namely, under the gauge transformation from Eq. (1) to 

Eq. (5) the homogeneous Maxwell equation (6) was used, while in proving the equality (11) the 

non-homogeneous Maxwell equation (10) was used. Thus, two different equations have been 

applied to the same physical entity, the EM energy-momentum tensor. This inconsistency prompts a 

closer look at the symmetrization of EM tensor, which is done below.  

 

2. The electromagnetic energy-momentum tensor for a system of charged 

particles and its “gauge renormalization” 

Consider a system of N>1 charged particles, where the total tensor of the EM field µνF  represents 

the sum of corresponding tensors 
( )

µν

k

f  for each particle  

( )
∑=

k k

fF
µνµν                (16) 
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(k=1…N) due to the superposition principle. The mechanical energy-momentum tensor (7) is 

properly modified as  

( )

( ) ( )∑=
k

kk

k
M

d

xd

dt

xd
cmT

τ

νµ

µν ,           (17) 

where the mass density is defined by the equation 
( ) ( )

( )k
kk

rrMm
rr

−= δ , 
( )k
M  being the mass of particle k. 

Determining the EM energy-momentum tensor for this system, we again proceed from the 

canonical form (1) and apply the gauge transformation (2). We use the gauge function (3) modified 

for the discrete system of N particles: 
( ) ( )

∑∑=
l lk

k
fA

νγµµνγ

π
ψ

4

1
 (l=1…N). Noting that  

( ) ( ) ( ) ( )








∂








+
















∂=∂ ∑∑∑∑

l lk
k

l lk
k

fAfA γ
νγµ

γ
νµγ

γ
µνγ

ππ
ψ

4

1

4

1
, 

and carrying out the gauge transformation (2) for the tensor (1), we obtain: 

( ) ( ) ( ) ( ) ( ) ( )
∑∑∑∑∑∑ ∂+








+−=

l lk
k

l lk kl lk k
EMG fAffgffT γ

νγµγα
γα

µν
γ

νµγµν

ππ 4

1

4

1

4

1
. (18) 

Eq. (18) differs from Eq. (5) by the second term in rhs, which was omitted in Eq. (5) due to the 

condition (6), which cannot be accepted for the system of charged particles. In order to distinguish 

the tensor (18) from the conventional tensor (5), we name it as the “generalized electromagnetic 

energy-momentum tensor” (EMG). 

Now let us apply the non-homogeneous Maxwell’s equation (10) for any particle l. Outside of 

this particle 
( )

0=∂ γ
νγ

l

f , while at its location 
( )

( ) ν
γ

ν
γ

νγ π l
l

jcf 4−=∂ . Hence at this point the last 

term in rhs of Eq. (18) is equal to 

( )
( ) ( ) ( ) ( )

νµνµµν

lllk
k

jA
c

jA
c

l
11

−=







−= ∑ ,         (19) 

insofar as the four-potential 
( )

µ

l
A  dominates over all other 

( )

µ

k
A  at the location of l

th
 particle. Note that the 

tensor (19) is symmetrical, because 
( )

µ

l
A  is proportional to 

( )

µ

l
v . We name the tensor (19) as 

“compensating term” for the reasons clarified below. Defining the same compensating term for each 

particle from the considered ensemble, we write the EMG tensor in the form: 

( ) ( ) ( ) ( ) ( ) ( )
∑∑∑∑∑ −








+−=

k kk
l lk kl lk k

EMG jA
c

ffgffT
νµγα

γα

µν
γ

νµγµν

π
1

4

1

4

1
, (20) 

The first term in rhs of Eq. (20) can be written in the form 

( )
( ) ( ) ( ) ( )

∑ 







+−+=

k kkkk
EMEM ffgffTT

γα
γα

µν
γ

νµγµνµν

π 4

1

4

1
ex , 

where the tensor ( )
µν

exEMT  is defined by the equation 

( )
( ) ( ) ( ) ( ) 








+−= ∑∑∑∑

≠≠ kl lk kkl lk k
EM ffgffT

γα
γα

µν
γ

νµγµν

π 4

1

4

1
ex .    (21) 

The introduced subscript “ex” indicates that the terms of “self-action”, containing ( )( )kk ff  (k=1…N), 

have been excluded from the tensor 
( )

µν

exEM
T . One can see that at the location of any particle l, this 

tensor satisfies the equality 

( )( ) ( ) ( ) ( )
cjFT

l
lEM

γ
νγν

µ
µ exex −=∂ ,          (22) 
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where ( ) ( )l
F

exνγ  does not contain 
( ) νγ









l

f . Then Eq. (20) acquires the form 

( ) ( )∑+=
k EEMk

EMEMG TTT
µνµνµν

ex ,          (23) 

In the latter equation we have introduced a new tensor 

( ) ( ) ( ) ( ) ( ) ( ) ( )

νµγα

γα

µν
γ

νµγµν

π kkkkkkEEMk
jA

c
ffgffT

1

4

1

4

1
−








+−= ,    (24) 

which describes only the properties of particle k, but not its interaction with other particles. That is why 

we can name it as the Eigen ElectroMagnetic (EEM) energy-momentum tensor of charged particle, 

supplying it by the subscript “EEM”. 

Eqs. (20) and (23) can be derived in another way, using the energy-momentum tensor, defined 

according to Hilbert [6]: 

( )γµνγµνµν
xg

Lg

xg

Lg
Tg

∂∂

−∂

∂

∂
−

∂

−∂
=−

2

1
,       (25) 

where L is the electromagnetic Lagrangian density. Taking L in the form 

( ) ( ) ( ) ( )
∑∑∑∑ −−=

l lk kl lk
k

ffjA
c

L
γα

γα

µ

µ π16
11

,       (26) 

with inclusion of both “interaction part” (the first term in rhs of Eq. (26)) and “field part” (the second 

term in rhs of Eq. (26)), and inserting L from Eq. (26) into Eq. (25), we obtain the EMG tensor in the 

form  

( ) ( ) ( ) ( ) ( ) ( )
∑∑∑∑∑∑ −








+−=

l lk
k

l lk kl lk k
EMG jA

c
ffgffT

νµγα

γα

µν
γ

νµγµν

π
1

4

1

4

1
. (27) 

We again see that outside the particles (
( )

0=
l

j ) the second term in rhs of Eq. (27) vanishes, while at the 

location of each l
th
 particle, 

( )l
A  dominates over the four-potentials of all other particles. Hence 

( ) ( ) ( ) ( )
∑∑∑ =

l ll
l lk

k
jAjA
νµνµ
, and Eq. (27) agrees with Eqs. (20) and (23). 

Using the tensor (23) and taking into account the matter tensor (17), we write the total energy-

momentum tensor as  

( )

( ) ( )

( ) ( )
µνµν

νµ

µν

τ exEM

N

k EEMk

kk

k
TT

d

xd

dt

xd
cmT +
















+= ∑

=1

.      (28) 

The above-introduced EEM tensor (24) represents the difference of two divergent terms and, in 

fact, is uncertain. Nevertheless, we can examine its general properties, considering first an isolated 

charged particle, moving at the constant velocity v
r
 in the frame of observation. For such a particle 

( )
µν

exEMT =0 by definition, and its total energy-momentum tensor acquires the form 

µν
νµ

µν

τ EEMT
d

dx

dt

dx
mcT += ,           (29) 

where its rest mechanical mass density is denoted as m. For the total energy-momentum tensor 

0=∂ µν
µT . Since for a freely moving particle 0=








∂

τ

νµ

ν
d

dx

dt

dx
mc , then 

0=∂ µν
µ EEMT ,              (30) 

too. Hence we get the energy balance equation for a bound EM field of an isolated charged particle: 

( ) ( ) ( ) ( ) ( ) ( )[ ] 0
1

4

1

4

1 000
0

=
∂

∂
−




 +−
∂

∂
=

∂

∂ ν

ν

γα
γα

ν
γ

νγ

νν

ν

π ssssss
EEM jA

xc
ffgff

xx

T
. 
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where the subscript “s” refers to an isolated charged particle. From there we derive 

( ) 0=
∂

∂
−⋅∇+

∂

∂
ρµ

µ ss

s A
x

S
t

u r
.         (31) 

where ρ is the charge density of the particle. Using the vector identity 

( ) ( ) ( )ssssss BEEBBE
rrrrrr

×∇⋅−×∇⋅=×  as well as the Maxwell’s equations ( ) tcBE ss ∂∂−=×∇
rr

, 

( ) ( ) tcEjcB sss ∂∂+=×∇
rrr

π4 , we can transform Eq. (31) to the form  

( ) 0=+⋅ ssss
dt

d
Ej ϕρ
rr

.           (32) 

Outside the charged particle both terms in lhs of Eq. (32) disappear. Thus, the equality 

0
0 =∂∂ νν

xTEEM  is valid in the whole free space. However, at the location of the particle the terms of 

Eq. (32) trend to infinity. Their vanishing sum signifies that the “self-work” done ss Ej
rr

⋅  is 

compensated by the change of the “potential energy” of particle Ups=ρsϕs. Noting that 

dtdEEj ksss =⋅
rr

, Eks being the kinetic energy, we arrive at the equality ( ) 0=+ psks UE
dt

d
, which 

means the conservation of the sum of kinetic and potential energy. For an isolated charged particle both 

components of energy do not depend on time, and the particle moves at a constant velocity, as it should 

be.  

In a similar way we analyse the spatial components of Eq. (30). Outside the charged particle we get 

0=∂ i

sT
µ

µ  for i=1…3. At the location of the particle ( ) 0=− dtASd sss

rr
ρ , which means that the time 

rate of the divergent Poynting vector sS
r
 is compensated by the corresponding time rate of the divergent 

“potential momentum” ss A
r

ρ  of the particle.  

Nevertheless, cancelling a self-action for an isolated charged particle with the help of EEM tensor 

(24), we have still failed to determine unambiguously the total energy and momentum of such a particle. 

Indeed, Eq. (24) yields the following energy density 
00

EEMT  and momentum density EMsp
r

 at the 

location of the particle 

ss
ss

EEM

BE
T ϕρ

π
−

+
=

8

22
00

, ( ) ssssEMs ABE
c

p
rrrr

ρ
π

−×=
4

.   (33), (34) 

A vagueness of these quantities means the impossibility of determining the total energy and momentum 

of the EM field of a single particle. 

Under these conditions we can carry out a suitable gauge modification of the EEM tensor (24), in 

order to escape the mentioned shortcomings. This mathematical problem can be much more easily 

solved physically, if we introduce a new tensor satisfying the conservation law (30). Namely, let us use 

a natural assumption that the total mass of a charged particle Mt is composed from its mechanical mass 

M and the mass MEM of its EM field. Denoting as m and mEM the corresponding rest mass densities, we 

transform the matter tensor (7) to the form 

( )
τ

νµ
µν

d

dx

dt

dx
cmmT EMM += ,           (35) 

where for an isolated charged particle 0=∂ µν
µ MT . Owing to the law of charge conservation, the 

mechanical mass cannot be transformed into EM mass and vice versa. Therefore, the vanished four-

divergence is derived independently for the mechanical and EM parts of the tensor (35), and 

0=







∂

τ

νµ

µ
d

dx

dt

dx
cmEM .           (36) 

We see that the symmetric tensor 

τ

νµ
µν

d

dx

dt

dx
cmT EMmass = ,           (37) 
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named by us as the tensor of EM mass, also satisfies Eq. (30). Hence it is connected with the tensors 
µν

EEMT  by the gauge transformation (2). Therefore, we can replace 
µν

EEMT  by 
µν

massT  in equation (28) 

for the total energy-momentum tensor of the system of charged particles: 

( ) ( )

( ) ( )
( )

µν

νµ

µν

τ exEM

k

kk

EMkk
T

d

xd

dt

xd
mmcT +





 += ∑ .       (38) 

It is known that the gauge transformation (2) does not influence the total energy and momentum, and 

dVTdVT
V

EEM

V

mass ∫∫ = 0000
; dVTdVT

V

i

EEM

V

i

mass ∫∫ = 00
    (39), (40) 

(the integration is carried out over the whole 3-space V). These equalities allow us to establish a 

relationship between the introduced EM mass of particle and its electric and magnetic fields. In 

particular, combining Eqs. (33), (37), and (39), we get for the rest frame of the charged particle: 

∫∫ −=
V

ss

V

s

EM dV
c

dV
c

E
M

22

2

8

ϕρ
π

,          (41) 

while combining Eqs. (34), (37), (40) we arrive at 

( ) dV
c

v
dVBE

c
vM

V

ss

V

ssEM ∫∫ −×=
24

1 ϕρ
π

γ
r

rrr
, 2211 cv−=γ    (42) 

These equations state that the difference of two divergent integrals in their rhs must be finite and 

equal to the EM mass of particle (Eq. (41)) and EM momentum of particle (Eq. (42)). Such 

statements are sufficient for further development of classical theory.  

Thus, the obtained tensor (38) contains single-valued quantities and does not include a self-

action of charged particles due to Eq. (22). The method proposed can be termed a “gauge 

renormalization”. We have to emphasize that this method has been applied to a bound EM field of a 

non-radiating isolated charged particle. If a particle moves in the external EM fields, and its EM 

radiation is not negligible, we have to proceed from the general tensor (23) for description of its EM 

field. Then the total energy-momentum tensor acquires the form 

( )

( ) ( )

( ) ( )
µνµν

νµ

µν

τ ex

r

EM

N

k EEMk

kk

k
TT

d

xd

dt

xd
mcT +
















+= ∑

=1

,     (43) 

where the superscript “r” indicates that the EEM tensor includes the radiation of each particle k. In 

order to write this tensor explicitly, we use the superposition principle, whence the EM energy-

momentum tensor of each particle represents the sum of components with a bound bf  and free rf  

EM fields, with ( ) cjf νµν
µ π4b =∂ , ( ) 0r =∂ µν

µ f . Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ν
µγα

γα

µν
γ

νµγµν

π lllllllllll

EEM
l

jAA
c

ffffgffffT 





 +−




















+








++








+








+−=







rbrbrbrbrb

r 1

4

1

4

1
. (44) 

In the next section we analyze some physical consequences, resulting from the application of the 

tensor (43) and its particular form (38) to radiating and non-radiating charged particles.  

 

3. Classical electrodynamics after “gauge renormalization”: basic points 
3.1. Motional equation for a charged particle 

The motional equation is derived from the equality  

0=∂ µν
µT ,                (45) 

If a particle does not radiate, we insert the tensor (38) into the conservation law (45). Then we 

obtain 
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( ) ( )

( )

( ) ( ) ( )( ) 0ex =















∂+





 ++



















 +∂=∂ ∑

k

EM

k

EMkk
l

k

EMkk
T

dt

dv
mmcv

dt

xd
mmcT

µν
µ

νν

µ

µ
µν

µ . (46) 

The latter equation is implemented, if and only if 

( ) ( )
( ) γ

νγ
ν

kex

l

EMkk
jF

cdt

dv
mm

2

1
=





 + , and

( ) ( )
0=















 +∂

dt

dx
mm k

EMkk

µ

µ . (47), (48) 

Now consider the motion of a single non-radiating charged particle q with the mechanical rest 

mass M in an external EM field. Proceeding from continuous to discrete distributions of masses and 

charges, we obtain from Eq. (47) 

( ) ( ) γ
νγ

ν vF
c

q

dt

dv
MM EM ex2

=+ ,          (49) 

Eq. (49) has two differences from the conventional motional equation (11). First it shows that a 

particle experiences the forces only due to the external EM fields, and a self-action is impossible. 

This result reflects our original exclusion of self-action from the electromagnetic energy-

momentum tensor under the “gauge renormalization”. Secondly, the EM mass of the particle is 

explicitly added to its mechanical mass. Of course, the idea to include the EM mass in the total 

mass of charged particles is as old as the classical model of the electron. However, it seems that this 

idea was usually forgotten, when the electromagnetic energy-momentum tensor and the motional 

equation were derived. The continuity equation (48) is common for both masses, and hence it is 

impossible to determine the relative contribution of M and EMM  to the total mass within classical 

electrodynamics.  

When a particle radiates, we use the tensor (43) to get its motional equation. Then the 

straightforward calculations give the following expression for the force of radiation reaction: 

( )( ) ( ) γϕϕ rrrr '∇−=⋅−∇−= qcAvqF
rrr

,        (50) 

where r'ϕ  is the scalar potential of EM radiation in the rest frame of particle. Note that r'ϕ∇  and r'ϕ  

have the same sign, because the electric field of EM radiation falls as r1 . Hence no “runaway 

solutions”, like a self-acceleration of radiating particle, is appeared. 

3.2. Energy flux in free and bound electromagnetic fields 

First consider a free EM field in the absence of charged particles. Then the electromagnetic energy-

momentum tensor (43) takes its usual form (5), and the equality 0µ
µT∂ =0 yields 0=∇+

∂
∂

S
t

u r
, 

where the Poynting vector S
r
 is given by Eq. (15). If the EM radiation falls on a system of charged 

particles, then the latter equation transforms to Eq. (13).  

Now let us determine the energy balance equation for a bound EM field with the total 

energy-momentum tensor (38). The equality 00 =∂ µ
µT  yields:  

( ) 0ex
ex

ex
=⋅∇+

∂

∂
+ S

tc

u
Ej
rr

,           (51) 

where ( ) ( ) γ
γ jFEj
ex0ex

=
rr

 is the time rate of work done (without the self-forces), 

( )
exex 4400 γα

γαγ
γ π FFFFu +−=  is the part of energy density of EM field, where the “self-action” 

components ll EE
rr
 and ll BB

rr
 are excluded, and exS

r
 is the portion of Poynting vector, where the “self-

action” components ll BE
rr

×  are also excluded. It is given by the equation ( ) πγ
γ 4

ex

0
ex FFcS ii −= . 

Eq. (51) does not yet determine the total flow of energy in a bound EM field, because the 

flow of EM masses should be added. As we mentioned above, due to the fixed ratio of mechanical 

to EM mass, the continuity equation (48) is separately valid for the density of EM mass us/c
2
: 
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0=









∂

dt

dx
u s

s

µ

µ ,             (52) 

and the total flow of EM energy is determined by summing up of Eqs. (51) and (52). Then simple, 

but extensive calculations give for the system of N non-radiating charged particles: 

0=⋅∇+
∂

∂
Σ−

Σ
GU

t

u r
,             (53) 

where we have introduced the vector 

( )∑ ⋅+⋅=
=

ΣΣ

N

k
kkkG BBEEvU

1

rrrrrr
,          (54) 

named as the generalized Umov vector. Here ∑=Σ
k

kEE
rr
 and ∑=Σ

k

kBB
rr
 are the resultant electric 

and magnetic fields. The operator Σ−∇  acts only on kE
r
, kB
r
, but not on the resultant fields. 

Thus, we have got the energy balance equation (53), which determines the energy flux in a 

bound EM field. We see that it does not contain the term of dissipation of EM energy Ej
rr

⋅ . In this 

connection we mention that the term Ej
rr

⋅  describes a time derivative of the kinetic energy of 

particles, which is equal with the opposite sign to the time rate of change of potential energy of 

particles in the bound EM field. In turn, the change of potential energy is already included in the 

partial time derivative tu ∂∂ . Hence, in comparison with the energy balance equation (13) for free 

EM field, the term Ej
rr

⋅  does not appear for the bound fields. Inasmuch as Eq. (53) represents the 

sum of Eqs. (51), (52), it incorporates two different effects: the flow of EM masses of all individual 

particles, as well as the superposition of bound EM fields of the particles. We notice that in the 

particular case, where the instantaneous velocities of all particles are equal to each other ( vvk

rr
=  for 

any k), Eq. (53) acquires the form 

( ) 0=⋅∇+
∂
∂

Σ
Σ uv
t

u r
.             (55) 

This equation shows that the resultant EM field rigidly moves together with the source particles. It 

is interesting that each individual particle carries its EM mass independently of other particles, but 

the superposition of bound EM fields from all particles transforms the sum of these individual 

motions into a common motion of the resultant bound EM field at the same velocity v
r
.  

The results obtained in this sub-section indicate that free and bound EM fields have 

substantially different physical properties. It warrants their primary distinction in the original 

energy-momentum tensor (43). 

3.3. The momentum of free and bound EM fields 

The momentum density of the EM field is the component сT
i

EM

0
 (i=1…3) in the EM energy-

momentum tensor. For electromagnetic radiation it is written in the known form cBEp π4
rrr

×= . For a 

bound EM field we determine the EM energy-momentum tensor as 

( )

( ) ( )

ex








 +−+= ∑ 4
4

1
4 γα

γα
µνν

γ
µγ

νµ

µν π
τ

FFgFF
d

xd

dt

xd
mT

k

kk

EMk
EM . 

which is derived from the tensor Eq. (38) by the exclusion of its mechanical part. Then the momentum 

density as a function of velocities of particles and their EM fields is 

( )[ ] ∑∑
≠

×++=
'

'

222
4

kk

kk

k

kkkk BEcBEvp πγ
rrrr

.       (56) 

The total momentum of a bound EM field is computed by integration of Eq. (56) over the whole 3-

space: 

( )[ ] ( )∫∑∫∑
≠

×++=
V kk

kk

V k

kkkkEM dVBEdVcBEvP
'

'

222
4πγ

rrrr
.   (57) 
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It consists of two parts: the momentum density, associated with the EM mass of charged particles, and 

the momentum density, resulting from the superposition of EM fields of different particles. We 

emphasize that the first term in rhs of Eq. (56) represents the sum of contributions of EM momenta of 

the particles, associated with their EM mass, to the total momentum of that particles. Therefore, the time 

rate of the first term in rhs of Eq. (57) is rather the consequence than the cause of the force experienced 

by the particles. Hence the external forces, acting on charged particles, are determined by the time rate 

of the second term in rhs of Eq. (57).  

Let us consider an isolated system, consisting of two non-radiating charged particles q1 and q2, and 

determine a total force exerted on this system. In general, it does not vanish, owing to violation of 

Newton’s third law in EM interactions. Adding the mechanical momenta of both particles to Eq. (57), 

we obtain 

( ) ( ) ( )∫ ×+×++++=
V

EMEMEM dVBEBEvMMvMMP 122122221111

rrrrrrr
γγ . 

The resulting force, acting on the particles, is 

( ) ( )[ ] ( )∫ ×+×−=+++=
V

EMEM dVBEBE
dt

d
vMMvMM

dt

d
F 122122221111

rrrrrrr
γγ . (58) 

If the particles are non-relativistic, then [11] 

( ) cAqdVBE
V

21121

rrr
=×∫ , ( ) cAqdVBE

V

12212

rrr
=×∫ , 

where 21A
r
 is the vector potential produced by the particle 2 at the location of particle 1, and 12A

r
 is the 

vector potential of particle 1 at the location of particle 2. Hence 

dt

Ad

c

q

dt

Ad

c

q

dt

Pd

dt

Pd
F 12221121

rrrr
r

−−=+= .        (59) 

This equation reflects the law of conservation of the canonical momentum  

( ) ( ) const12222111 =+++= cAqPcAqPPC

rrrrr
 

for the considered non-radiating non-relativistic system. Eq. (59) has also been derived in [12] within 

the Lagrangian formalism.  

Without the “gauge renormalization”, the conventional Poynting vector would determine the 

resultant force: 

( ) ( )∫ ×+×+×+×−=+=
V

dVBEBEBEBE
dt

d
vMvM

dt

d
F 12122111222111

rrrrrrrrrrr
γγ , (60) 

and instead of Eq. (59), we would obtain 

( ) ( )∫∫ ×−×−−−=+=
VV

dVBE
dt

d
dVBE

dt

d

dt

Ad
q

dt

Ad
q

dt

Pd

dt

Pd
F 2211

12
2

21
1

21
rrrr

rrrr
r

.  (61) 

which does not agree with the law of conservation of the canonical momentum. Moreover, at the 

location of point-like charges the third and fourth integrals in rhs of Eq. (61) diverge. The difference 

between Eqs. (59) and (61) reflects a physical meaning of the “gauge renormalization”, when the time 

rates of the terms, taken from the same source particles ( ( )11 BE
rr

×  and ( )22 BE
rr

× ) contribute to their 

own EM momentum, associated with the EM mass, and thus represent the consequences of an action of 

the external forces, but not their cause. 

Finally, for an isolated charged particle, moving at the constant velocity v
r
 in a laboratory, the 

momentum density of the bound EM field is determined as 

( ) ( )vvmcvuvp EMEM

rrrr
=== 20γ ,         (62) 

where ( ) ( ) 20 cvuvmEM == γ
r

 is the density of velocity-dependent EM mass of the particle. Since 

the equality ( ) ( ) 2cvmvu EM

rr
=  is implemented by definition, then the known problem “4/3” is 

formally eliminated in Eq. (62). It does not mean that the problem is resolved: it is simply relocated 

from Eq. (62) into Eqs. (41) and (42). It reflects the obvious fact that any gauge operation does not 
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change the total energy of charged particles, which includes the energy that provides the stability of 

the electron (“Poincaré stresses” [13]). A detailed analysis of this problem falls outside the scope of 

the present paper.  

 

4. Conclusions 
1. In this paper we have removed the inconsistency that existed up to now in classical 

electrodynamics. Namely, in the gauge transformation of canonical energy-momentum tensor (1) to 

the symmetric form, we applied the non-homogeneous Maxwell equation (10) instead of the 

irrelevant homogeneous equation (6). As a result, the symmetric “generalized” energy-momentum 

tensor acquired the additional “compensating term” (19). This allows a gauge transformation, 

converting the divergent terms of classical electrodynamics to converging integrals. This operation 

was named as “gauge renormalization”.  

2. The obtained energy-momentum tensor has been applied to derive the motional equation, the 

energy balance equation, and the momentum conservation law for the system of moving charged 

particle. The motional equation for a non-radiating charged particle does not contain its self-force, 

and the mass parameter represents the sum of mechanical and electromagnetic masses. The 

motional equation for a radiating particle does not yield any “runaway solutions”. The energy flux 

in a free EM field is guided by the Poynting vector. The energy flux in a bound EM field is 

described by the generalized Umov vector, defined in the paper.  

 

Acknowledgment 
The author warmly thanks Oleg V. Missevitch and Thomas E. Phipps, Jr. for useful remarks, which 

have been taken into account in the final version of the paper. 

 

References 
[1]. H.A. Lorentz. The theory of Electrons. 2

nd
 Ed. (Dover, 1952). 

[2]. M. Abraham. Ann. Phys. 10 (1903) 105. 

[3]. P.A.M. Dirac. Proc. Roy. Soc. (London) A167 (1938) 148. 

[4]. M. Born and L. Infeld. Proc. Roy. Soc. (London) A144 (1934) 145. 

[5]. F. Rohrlich. Classical Charged Particles, (Reading, Mass.: Addison-Wesley, 1965). 

[6]. L.D. Landau and E.M. Lifshitz. The Classical Theory of Fields, 2nd edn (New York: Pergamon 

Press, 1962). 

[7]. J.D. Jackson. Classical Electrodynamics. (New York, Wiley, 1975). 

[8]. W. Pauli. Principles of Quantum Mechanics, Encylcopedia of Physcs, Vol. V/1 (Springer, Berlin, 

1958). 

[9]. E.J. Moniz and D.H. Sharp. Phys. Rev. 15 (1977) 2850. 

[10]. R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures in Physics. Vol. 2, 

Addison-Wesley, Reading, Mass. (1964). 

[11]. J.M. Aguirregabiria. A. Hernández and M. Rivas. Eur. J. Phys. 3 (1982) 30-33. 

[12]. A.L. Kholmetskii. Annales de la Foundation Louis de Broglie, 29 (2004) 549. 

[13]. H. Poincaré. Rend. Circ. Mat. Palermo 21 (1906) 129. (Engl. trans. with modern notation in 

H.M. Schwartz. Am. J. Phys. 40 (1972) 860). 



189 

Учет поляризации вакуума в рамках стандартных КЭД и КХД 

приводит к асимптотической свободе на малых расстояниях 

Герценштейн М.Е. 

D.V. Skobeltsyn Nuclear Physics Institute 

Moscow State University 

Moscow 119992 Russia. 

 

Трудность в квантовой и классической электродинамике – электростатическая энергия 

заряженной частицы (электрона) оказывается бесконечной - известна давно.[1 –7 ]. 

Формальное устранение трудностей – теория перенормировок (1948) -отбрасывание 

бесконечных величин – не нравилось многим выдающимся физикам, например 

Р.Фейнману [8] и Л.Д.Ландау [9]. Мы покажем, что корректный учет реального 

физического эффекта - поляризации вакуума позволяет устранить появления бесконечных 

величин в электродинамике. 

 Задача о поляризации вакуума - неоднократно рассматривалась классиками квантовой 

электродинамики[1-9]  Первый цикл работ появился за несколько лет до второй мировой 

войны, до появления метода перенормировок, авторы перечислены в сборнике [3]. Мы 

использовали работы Вайсскопфа [7,8], они вошли в учебник [1 § 47.3]. Для света �А = 0, 

и ток поляризации исчезает. Поэтому ток поляризации отличен от нуля только вблизи 

заряженных частиц и на внутренних фотонных линиях диаграмм Фейнмана. 

 Квантовый расчет поляризации электронного вакуума был сделан Вайсскопфом [7,8], 

все необходимые формулы есть в книге [1,§47.3]. Мы используем обозначения [1], в книге 

h=1, c=1. Рассматривается общая задача. Имеется ток j
(e)

=−�A
(e)

 Kроме того, имеется и ток 

поляризации
 
 электронного вакуума. Переходя к обычным единицам [1, формула 47,40]: 

j 
(e)

+j0
 
= -�Α 

,  j(пол)
 
=-

2

15

1

hc

e

π
2)(

mc

h
�j

(e) 
 =

 
2

15

1

hc

e

π
 2)(
mc

h
�� 

A
  

(1) 

где j0 -
 
ток источника – протона. Дрожание протона мало, его рассматриваем как точечный 

заряд, расположенный в точке r=0. Вне этой точки есть только ток поляризации вакуума, и 

нас интересуют уравнения поля в вакууме. Из (1) видно, что в уравнения для потенциала 

вводятся высшие производные. Именно высшие производные приводят к конечности 

энергии поля [9§ 33, 10,11] .В (1) надо добавлен  еще и внешний ток, создающий поле - j 
(0)

 

- неподвижный заряд. 

 Оператор 2)(
mc

h
� имеет нулевую размерность. Поэтому ряд, описывающий связь 

между током поляризации и вектор потенциалом Аi может содержать любые степени 

этого оператора. В общем случае для тока  поляризации электронного вакуума будет ряд: 

ji(пол)=
2

15

1

hc

e

π
2)[(

mc

h
knΣ �]

n �Ai=L�Ai,  L=L(�),  n≥1.  k1 =1  (2) 

где L – линейный дифференциальный оператор с постоянными коэффициентами. 

Подчеркнем, что в (2) отсутствует слагаемое n=0. Коэффициенты должны постоянными 

быть в силу инвариантности относительно сдвига. Ряд (2) удовлетворяет требованиям 

релятивистской инвариантности и поэтому теория релятивистки инвариантна. Напомним, 

что теории, в которых вводится элементарная длина и или размазывание заряда [3,12-14], 

нарушают релятивистскую инвариантность. Ряд (2) линеен по А, поэтому его можно 

перенести в левую часть уравнения �A=-j. Получаем уравнение для потенциала А, 
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которое также содержит  высшие производные. Производные более высокого порядка ≈�3
 

мы
 
в настоящей работе опускаем. Полный ряд, включая производные более высокого 

порядка, был рассмотрен [10,11], где была доказана конечность пропагатора фотона при 

больших k и конечность собственной энергии .для точечного заряда. Это приводит 

конечным интегралам и хорошо сходящимся рядам. Уравнения поля будут: 

�[1+ L(�)] A  = - j0              (3) 

 где – j0 – источник поля – неподвижный заряд. Необходимо оговорить, что в точном ряде 

(2) коэффициенты kn  могут отличаться от значений, полученных методом 

последовательных приближений. Если метод последовательных приближений не 

достоверен, то kn надо рассматривать как числовые параметры, с которыми можно 

провести вычисления до конца. Тем самым можно выйти за пределы теории возмущений. 

Электромагнитное поле характеризуется также и поляризацией, так как оператор � по 

отношению к поляризации является диагональным и при  взаимодействии с электроном 

поляризация не меняется, то уравнение (3) нужно написать для каждой поляризации. В 

статике достаточно рассматривать только электростатический потенциал ϕ, для заряда 

источника поля ρ0 и заряда поляризации вакуума имеем, используя (3) [1,7,8]: 

�=∆; ρ0=−∆ϕ   ρ(пол) = −
hc

e2

15

1

π

2









mc

h
∆∆ϕ     (4) 

∆[1− (∆/k0
2
 )] ϕ = - ρ0       λ

2=( k0 )
-2

 =
hc

e2

15

1

π

2









mc

h
,      

Можно получить все соотношения непосредственно из электростатики материальных 

сред, и можно вести  диэлектрическую проницаемость ε [10,11] : 

D = εE ; div D= -ρ0; div E = -(ρ(пол) + ρ0)         

ε   =ε(ω,k)=( ρ (пол)  + ρ0)/ρ0= 1+
2

0









k

k
,  k<< ω/с,     (5) 

λ =1/k0  = 
2

2

15

137

13715

1

mc

e

mc

h

ππ
= ; 

137

12

==
hc

e
α        

λ= 1/k0  = 4,80 10
-13 

см. Ток поляризации протонного вакуума меньше на 6 порядков. В 

работах [10,11] была ошибка - приведено другое численное значение k0, в настоящей 

работе это значение уточнено. Вывод работ [10,11] о конечности собственной энергии 

остается в силе. Обсудим структуру формулы (4) для λ2
. В нее входят два множителя – 

безразмерная константа взаимодействия электромагнитного поля и электрона и квадрат 

комптоновской длины электрона – частиц, движение которых вызывает поляризацию 

вакуума. 

 Уравнения электростатики в представлении Фурье имеют два полюса: 

ϕ= επ 24

1

k

e
,   полюс k=0             

ε =0, полюс:  k=± ik0             

 Волновой вектор становится чисто мнимым. 

 Для перехода к координатному представлению надо применить обратное 

преобразование Фурье. После интегрирования по углам в k-пространстве возникает 

множитель (e/4πr).Интеграл по k в пределах (0<k<+∞)можно свести к интегралу по 

вещественной оси комплексной плоскости k (-∞<k<+∞) и интегралу по полуокружности 

вокруг точки k=0. После чего контур интегрирования замыкается в верхней 

полуплоскости и сводится к вычету в точке k=ik0. Подчеркнем, что в статике никаких 

разрезов не возникает. 
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 Поэтому  электростатический потенциал ϕ точечного заряда равен 

r

ee
rk01

4

−−
=

π
ϕ ,             (6) 

Рассмотрим точку  r = 0, числитель (6) можно разложить в ряд  по степеням k0: 

ϕ(0) = ∞<0
4
k

e

π
,    E(0) = 0.  k0 ≈ α         (7) 

электростатический потенциал не имеет особенности при r=0. На расстояниях, меньших 

1/k0, меняется структура статического электрического поля. Электростатический 

потенциал  слабее, чем это следует из закона Кулона. Пробная частица двигается в слабом 

поле, как свободная. Это относится к электрическому полю, создаваемому любой 

заряженной частицей. Модель приводит к асимптотической  свободе на малых 

расстояниях. Ядерные взаимодействия происходят в области, где электрические поля 

подавлены поляризацией электронного вакуума. Можно сказать, что эффективный заряд 

уменьшается на малых расстояниях. 

 Это качественно согласуется с тем, что учет поляризации вакуума улучшает 

сходимость интегралов для собственной энергии.[2,3, 10-12]. Наличие плато 

электростатического потенциала на расстояниях порядка нескольких ферми, является 

аргументом в пользу линейного рассмотрения. Напомним, что нелинейность проявляется 

на существенно меньших расстояниях [14] 

 Мы использовали формулы Вейсскопфа для уточнения уравнений электродинамики, 

вводили поправки к коэффициентам уравнений, но не искали поправки к потенциалу ϕ. 

 Свойства потенциала ϕ  согласно формуле (6) радикально отличаются от свойств 

нулевого приближения  ϕ= (e/4πr), поэтому  решения в виде ряда теории возмущений, 

которые имеются в литературе [1, §50.3] и которые содержат особенности при r=0, не 

достоверны. Первый член ряда в точке r=0 должен быть бесконечным и отрицательным, 

чтобы уничтожить бесконечную особенность нулевого приближения. Отметим, что на 

нежелательность  использования рядов теории возмущений указывал в 1954 году 

Л.Д.Ландау [13,14], и он оказался прав. «Размазывание» источника поля [13] по области, 

имеющей линейный  размер а≠0, нарушает релятивистскую инвариантность теории, и при 

предельном переходе (а→0) она не восстанавливается. Подчеркнем, что исходные 

уравнения теории (1,2) релятивистки инвариантны. Обратим внимание, что k0 ≈ α  и 

поэтому формула (4) не может быть получена в виде ряда по степеням α. Поэтому 

рассмотрение области малых r требует выхода  за рамки теории возмущений.  

 Обратим внимание еще на одно обстоятельство. Исходное уравнение (1) для 

потенциала �Α=0 допускало решение только в виде поперечных волн, уравнение с 

высшими производными (3) допускает еще одну ветвь – продольные затухающие 

решения, аналог экранировки Дебая в плазме – ближние поля, которые локализованы 

вблизи источников поля. По аналогии с КХД [15] эту ветвь можно назвать «духами», в 

нашем случае она имеет ясный физический смысл, и избавляться от нее не надо. Вопрос о 

том, является ли масса электрона электромагнитной или механической, ставился давно – 

более 100 лет тому назад. Трудности состояли в том, что для существования электрона в 

статике нужно притягивающее поле, энергия которого отрицательна и для точечного 

электрона бесконечная. Энергия электрического поля положительна и бесконечна. 

Выражение ∞−∞ неопределенное и расшифровать его невозможно. Учет поляризации 

вакуума приводит к конечной и положительной величине, которая может оказаться 

другой для другой модели. Полевая энергия только электрического поля меньше энергии 

покоя электрона m0c
2 

, что, на наш взгляд, связано с тем, что есть и другие поля, в том 

числе и сегодня не известные. 

 В классической электродинамике [9] энергия точечного заряда можно сделать 

конечной двумя способами [9]: 
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- введением производных более высокого порядка, которые сглаживают разрыв 

потенциала при r=0. Этот вариант получается из квантовой теории, коэффициент 

при вторых производных имеет квантовую природу. Этот вариант в КЭД является, 

по нашему мнению, достаточным. Вариант приводит к асимптотической свободе 

на малых расстояниях. 

- введением нелинейности  в функцию Лагранжа, которые запрещают бесконечные 

поля. Пример для сферически симметричного случая приведен в [9 § 36]. Однако 

этот пример нельзя нарушает принцип суперпозиции и его трудно обобщить на 

квантовый случай. 

Таким образом, эффект асимптотической свободы имеет место не только в КХД [15-17], 

но и в стандартной линейной  квантовой электродинамике. 

 Рассмотрим теперь сильные взаимодействия, в рамках квантовой хромодинамики – 

КХД [15].Сходство между КХД и КЭД неоднократно обсуждалась в литературе, ниже эти 

результаты будут получены в рамках КХД. 

 Глюонное поле в КХД имеет векторный потенциал µ
aB , латинский индекс означает 

цвет [15]. Ковариантный ротор поля В имеет вид [15] : 

gBBGBD aaaa +∂−∂=≡× µννµµννµ )(
νµ
cbabc BBfΣ      (8) 

 где abcf - структурные константы, антисимметричные по цветовым индексам. Оператор 

дифференцирования – линейный оператор по отношению к вектору B, а формула (8) 

содержит произведения компонент В. Казалось бы, они нарушают линейность. Однако 

линейность остается благодаря свойствам антисимметрии по цветовым индексам 

структурных констант – в последнее слагаемое Ba вообще не входит. Тензор νµ
cb BB  при 

фиксированных координатных индексах симметричен по цветовым индексам, как 

произведение, и поэтому его свертка с антисимметричными по цвету структурными 

константами дает нуль. Поэтому, на наш взгляд, утверждения  в литературе о 

принципиальной нелинейности [15 стр. 5] глюонного поля, которая проявляется во 

взаимодействии глюонов, требуют более подробного обсуждения. В формуле (8) g – 

универсальная константа сильного взаимодействия, для безразмерной константы имеем: 

1

2

≈=
hc

g
sα               (9) 

Большое значение константы (9) делает невозможным разложение в ряд теории 

возмущений по степеням αs.Для перехода к волновому уравнению с производными 

второго порядка  надо к (8) еще раз применить линейный оператор )( BD× .Однако, 

кратное применение линейных операторов не может привести к нелинейности. 

 Поскольку нелинейности нет, то остается возможность линейной связи между 

разными глюонами. Если это так, то в  рамках КХД задача о глюонах может быть решена 

точно. В уравнениях для глюонов фиксированного цвета входят компоненты вектор 

потенциала других цветов и при этом линейно. Всего имеется 8 типов глюонов. Таким 

образом, получаем линейную систему из 8 уравнений, и всегда можно найти нормальные 

волны [18], каждая нормальная волна распространяется независимо.   

При переходе от КЭД к КХД имеет место соответствие А⇔Вs , причем индекс указывает 

тип глюона. При этом имеет место соответствие и для констант: 

α(элм) =  
π3

2e
≈10

-3 ⇔αs ≈1 ;  h=1, c=1;  ϕ =А0 ⇔ Βs0,     (10) 

 В формуле (5) для элементарной длины α(элм) - безразмерная постоянная 

электромагнитного взаимодействия в рационализированных единицах должна быть 

заменена на безразмерную постоянную αs кварк-глюонного взаимодействия (10) [16]. 

 Кроме того, массу электрона m=0,5 Мэв надо заменить на массу кварков, надо брать 

массу самых легких кварков m=10 Мэв. И есть еще одно обстоятельство. При 
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взаимодействии с вакуумом поляризация фотона не меняется, а цвет глюона может 

измениться. При выводе в КХД уравнения типа (3) нужно учесть, что объединять в левой 

части можно только глюоны одного цвета. Поэтому возникнет добавочный множитель, 

равный вероятности сохранения цвета. Учитывая, что всего имеется  8 сортов глюонов, 

этот множитель равен примерно 1/8. Для элементарной длины в КХД получаем 

оценочную формулу: 

cm

h

cm

h

hc

g
as

21

2
2

8

1
=             (11) 

 Как и в КЭД, из релятивистских уравнений в статическом случае [19] появляется 

элементарная длина и асимптотическая свобода при малых расстояниях. При вычислениях 

исчезают бесконечности и необходимость проведения перенормировок. Элементарная 

длина имеет разумный порядок около 1 ферми, сегодня эта область может быть 

исследована экспериментально. Асимптотическая свобода определяется для статического 

поля, как уменьшение эффективного заряда, более точное количественное определение 

зависит от формы потенциала.  
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From Laue’s stress-energy tensor to Maxwell’s Equations
and the implications for Einstein’s GTR.

E. Paul J. de Haas
Veluws College, Waltersingel 130, 7314 NX, Apeldoorn, The Netherlands ∗

(Dated: February, 07, 2005)

In this paper I will connect the electrodynamic stress energy tensor, in its electrodynamic version
that dates back to Gustav Mie’s 1912 papers, to the anti-symmetric electromagnetic field tensor and
to the Lorentz Force Law and Maxwell’s Equations. Important insight concerning the mathematical
connection between Einstein’s GTR and Maxwell-Lorentz ED will result. Backed by these results
I will put forward the claim that in the regions where Maxwell-Lorentz’s electrodynamics can be
successfully applied, Einstein’s restrictions put on his GTR stress-energy tensor are such that they
cannot be fulfilled and so GTR cannot be applied.

I. INTRODUCTION

These days, the aspirations of grand unification in physics are defined as the wish to unify the Standard Model
with Einstein’s General Theory of Relativity into one theory called GUT. As a philosopher specialized in ontology
however, I feel it difficult to accept the Standard Model as a complete theory. The Standard Model is composed
of impressive mathematics and complicated high-tech and high-cost experimentations, but its ontological part looks
rather poor. Its internal consistency can also be criticized to because the integration of its mayor ingredient, Quantum
Chromodynamics, with electrodynamics and quantum mechanics has more the character of a wishful proclamation
than a smooth thing. To bring some clarity in the ontological aspects of the project of unification, I found it
necessary to go back to the foundations of the three ontologically better defined theories of relativistic Maxwell-
Lorentz electrodynamics (RED), Einstein’s GTR and Copenhagen QM. After some study, it seemed to me that a
general component in all three was relativistic tensor dynamics (RTD), as defined first by Max von Laue [1].

So I tried to link the three theories, GTR, QM and ED, to one single stress energy tensor Tµν and its relativistic
derivations. In an earlier article I connected the quantized action to the source of gravity, the trace of the stress energy
tensor Tµν , a connection that resulted in a principle of equivalence, of the phases instead of the masses, for Quantum
Gravity [2]. In the article presented at the 2004 PIRT conference in London I tried to translate the mechanical
stress energy tensor Tµν = VµGν in terms of the electrodynamic current and potential Tµν = JµAν [3]. In this
article I will first summarize the 2004 PIRT result and then try to connect the electrodynamic stress energy tensor,
in its electrodynamic version JµAν that dates back to Gustav Mie’s 1912 papers ([4], p. 525), to the anti-symmetric
electromagnetic field tensor Bµν . Important insight concerning the mathematical connection between Einstein’s GTR
and Maxwell-Lorentz ED will result. If this mathematical link is embodied in real physics, if it has an appropriate
ontology, is a subject of further research.

II. BASIC RESULTS PRESENTED AT THE 2004 LONDON PIRT.

A. Max von Laue’s relativistic conservation laws.

1. The mechanical stress energy tensor

The stress energy tensor introduced by Max von Laue in 1911 can be written as Tµν = VµGν [1], [5]. With

Gν =
[

i
cu
g

]
and Vµ =

[
ic
v

]
,

we can write the SE-tensor in one single velocity field as

Tµν =
[

ic
v

] [
i
cu
g

]
=

[ −u icg
i
cuv v ⊗ g

]
. (1)
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In the paper I will as much as possible omit the multiplier γ, defined as

γ =
1√

1− v2

c2

. (2)

This seems to imply γ ≈ 1 and v ¿ c, but there is an other, more ontological reason for this approach, the use of the
concept of a velocity field (as in Dirac-1951, [6], [7]). The velocity four vector is not connected to one localized particle
or to a particle seen as a specific reference frame, but it is defined as a field existing in all space-time. The velocity
field as a whole can seen from the perspective of one single observer in his frame. When a particle moves in this field,
it has at every world-point the velocity connected to this localization in space-time. The Lorentz Transformations do
not connect specific velocities of one field, but relate the fields as seen by different observers in their specific reference
frames. The Lorentz Transformation multiplication factor meanly appears when we map the velocity field Vµ of
observer A onto the velocity field V ′

µ of observer B moving with velocity w relative to A.

2. The conservation laws for energy and momentum

For closed systems energy and momentum are conserved and the conservation laws can be expressed as ∂µTµν = 0
with the four vector partial derivative defined as

∂µ =
[ − i

c∂t

∇
]

. (3)

This leads to

∂µTµν =
[ − i

c∂t

∇
] [ −u icg

i
cuv v ⊗ g

]
=

[
i
c (∂tu +∇ · uv)
∂tg +∇(v ⊗ g)

]
=

[
i
cP
f

]
=

[
0
0

]
.

(4)

We have used P for the power density and f for the force density. If we write S = uv for the energy density current
or Umov’s vector, this results in the conservation equation for energy

∇ · S + ∂tu = 0, (5)

which can also be written as ∂µSµ = 0, and the conservation equation for momentum

∂tg +∇(v ⊗ g) = 0. (6)

Of course, if the system is not completely closed, we have a net power density

P = ∂µSµ = ∇ · S + ∂tu. (7)

3. The conservation law for angular momentum

A relativistic system also has a mechanical torque-tensor

Nµν = Tµν − Tνµ = VµGν − VνGµ. (8)

If we use the abbreviation a for anti-symmetric we can define na = v × g and ga = 1
c2 uv − g, we can write the

torque-tensor in full as:

Nµν =




0 −icga,1 −icga,2 −icga,3

icga,1 0 na,3 −na,2

icga,2 −na,3 0 na,1

icga,3 na,2 −na,1 0


 . (9)

A closed system, for example a free particle, should not acquire any additional angular momentum, free as it is
from external influences. The conservation of the intrinsic angular momentum requires the stress-energy tensor to
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be symmetric VµGν = VνGµ and the torque-density tensor and six-vector to vanish, so Nµν = 0. This leads to
na = v × g = 0 and gac2 = uv − gc2 = 0, which gives

g =
1
c2

uv (10)

or g = ρiv and u = ρic
2 for a moving free particle. These equations are very familiar, the last is the density expression

of Einstein’s famous U = mc2 and g = ρiv is nothing but the density version of Newton’s definition of momentum
p = miv.

B. Translating these results into EM potential terms.

1. The electromagnetic stress energy tensor

The electromagnetic system can be given a stress energy tensor in terms of the charge density current and the
electric potential, as first done by Gustav Mie in 1912 ([4], p. 525):

Tµν = VµGν = VµρemAν = ρemVµAν = JµAν . (11)

This makes it possible to achieve a direct translation of von Laue’s relativistic tensor dynamics, including the conser-
vation laws, into electrodynamic terms.

The stress energy tensor introduced by Max von Laue in 1911 can be written as Tµν = JµAν , with

Aν =
[

i
cφ
A

]
and Jµ =

[
icρ
J

]
(12)

so

Tµν =
[

icρ
J

] [
i
cφ
A

]
=

[ −ρφ icρA
i
cφJ J ⊗A

]
. (13)

2. The torque tensor and conservation law for angular momentum

A relativistic system also has a mechanical torque-tensor

Nµν = Tµν − Tνµ = JµAν − JνAµ. (14)

If we use the abbreviation a for anti-symmetric we can define na = J ×A and ga = 1
c2 φJ − ρA, we can write the

torque-tensor in full as:

Nµν =




0 −icga,1 −icga,2 −icga,3

icga,1 0 na,3 −na,2

icga,2 −na,3 0 na,1

icga,3 na,2 −na,1 0


 . (15)

A closed system, for example a free particle, should not acquire any additional angular momentum, free as it is
from external influences. The conservation of the intrinsic angular momentum requires the stress-energy tensor to
be symmetric JµAν = JνAµ and the torque-density tensor and six-vector to vanish, so Nµν = 0. This leads to
na = J ×A = 0 and ga = 1

c2 φJ − ρA = 0 which gives

A =
1
c2

φv (16)

for a moving free particle. In four vector terms this implies, for closed systems,

Aµ =
[

i
cφ
A

]
=

[
i
cφ

1
c2 φv

]
=

1
c2

φ

[
ic
v

]
=

1
c2

φVµ. (17)
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3. The conservation laws for electromagnetic energy and momentum

For closed systems energy and momentum are conserved and the conservation laws can be expressed as ∂µTµν = 0.
This leads to

∂µTµν =
[ − i

c∂t

∇
] [ −ρφ icρA

i
cφJ J ⊗A

]
=

[
i
c (∂t(ρφ) +∇ · (φJ))
∂t(ρA) +∇(J ⊗A)

]
=

[
i
cP
f

]
=

[
0
0

]
.

(18)

This results in the conservation equations for energy

∇ · (φJ) + ∂t(ρφ) = 0 (19)

and momentum

∂t(ρA) +∇(J ⊗A) = 0. (20)

Of course, if the system is not completely closed, we have a net power density

P = ∂µSµ = ∂t(ρφ) +∇ · (φJ). (21)

We will investigate this last term further. We write it out as

P = ∂µSµ = ∂t(ρφ) +∇ · (φJ) = ρ∂tφ + φ∂tρ + φ∇ · J + J∇ · φ =
φ(∇ · J + ∂tρ) + J∇ · φ + ρ∂tφ = φ(∂µJµ) + Jµ∂µφ.

(22)

Let’s study the last term ∂µφ a bit closer. If we use Aµ = ∂µχ and ∂tAµ = Eµ for symmetric electric forces, we can
write it as

∂µφ = −∂µ∂tχ = −∂t∂µχ = −∂tAµ = −Eµ (23)

So if we use Eµ = −∂µφ for symmetric systems, we get

P = ∂µSµ = φ(∂µJµ)− JµEµ. (24)

If the charge can be considered as a conserved quantity we have ∂µJµ = 0 and get a net power density equation

P = ∂µSµ = −JµEµ (25)

4. The process of symmetry breaking results in an equality needed for the derivation of Maxwell’s Equations

Let’s consider the last equation, which can be applied to open systems that lose electromagnetic energy but maintain
charge conservation. Suppose we can separate it in ∇ · S = −J · E 6= 0 and ∂tu = ρ∂tφ = 0. We will not justify
the physics of this situation, but simply claim the possibility that this describes mathematically the anti-symmetric
character of a photon emitting system. Once it radiates, the symmetry of the EM system is broken. We hypothesize
that the time-like parts of the four vectors Sµ and Eµ of a radiating system are zero. For such a system we can deduce
a simple relation between the acceleration and the partial space derivative.With

−J ·E = −v · ρE = −v · f = −ρiv · a = −g · a = −a · g (26)

and

∇ · S = c2∇ · g (27)

we get

c2∇ · g = −a · g (28)

so

a = −c2∇. (29)

This equation is a crucial step in the derivation of the anti-symmetric Maxwell-Lorentz theory from Laue’s symmet-
rical Relativistic Tensor Dynamics. The physical justification of a = −c2∇ lies in the process of symmetry breaking.
We cannot investigate this crucial symmetry breaking process at this stage of analysis. For the time being, we use the
relation a = −c2∇ as a mathematical necessity in the route from Laue’s symmetrical RTD towards Maxwell-Lorentz’
anti-symmetrical RED. Discussing the physics incorporated in the road map from Laue to Maxwell-Lorentz makes
sense after we showed the existence of a mathematical connection.
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C. The antisymmetric potential field tensor

In our attempt to connect Laue’s symmetric Relativistic Tensor Dynamics to Maxwell-Lorentz anti-symmetric
relativistic Electrodynamics, we introduced the JA-stress energy tensor and the anti-symmetric torque tensor. As a
next step we introduced, in our London PIRT paper, the antisymmetric potential field tensor Aµν as

Nµν = −ρc2Aµν (30)

With the EM torque-tensor as

Nµν = JµAν − JνAµ (31)

we get for Aµν

Aµν = − 1
c2

(VµAν − VνAµ) (32)

and

Aµν = − 1
ρc2

Nµν (33)

We want to define the reduced-torque potential tensor in full as:

Aµν =




0 i
cAa,1

i
cAa,2

i
cAa,3

− i
cAa,1 0 Ãa,3 −Ãa,2

− i
cAa,2 −Ãa,3 0 Ãa,1

− i
cAa,3 Ãa,2 −Ãa,1 0


 . (34)

With the abbreviation a for anti-symmetric this gives us the reduced torque potential or magnetic potential as

Ã = − 1
ρc2

na = − 1
ρc2

J ×A (35)

so

na = −ρc2Ã = J ×A (36)

and

Ã = − 1
c2

v ×A, (37)

and the electric potential as

ga = ρAa =
1
c2

Jφ− ρA, (38)

so

Aa =
1
c2

vφ−A. (39)

We introduced the the antisymmetric potential field tensor Aµν as a mathematical entity that can be defined in a
consistent uniform manner. Its physical existence depends on the reality, or not, of the breaking of symmetry. The
symmetry is broken once the torque tensor Nµν is not equal to zero. The question if the mathematical road from
Laue’s RTD to Maxwell-Lorentz’ RED corresponds to some physical reality can be pinpointed to the breaking of
symmetry. Mathematically, this means the existence of a non-zero torque tensor. Does this non-zero torque tensor
correspond to some real ontology? Before we investigate this, we will show how to derive, mathematically, the Lorentz
Force Law and Maxwell’s Equations from Laue’s RTD.
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III. FROM LAUE’S TENSOR DYNAMICS TO THE RELATIVISTIC MAXWELL-LORENTZ THEORY

A. From the anti-symmetric potential field tensor to the electromagnetic field tensor

Using the relation a = −c2∇ or − 1
c2 a = ∇ makes it easy to derive the electromagnetic field tensor Bµν from the

potential field tensor Aµν . In the process a rest tensor will appear. We will name this rest tensor Eµν and derive its
properties. We then have the simple relation

∂tAµν = Bµν + Eµν . (40)

We will start with the anti-symmetric electric potential first.

∂tAa = ∂t(
1
c2

vφ−A) =
1
c2

aφ− ∂tA +
1
c2

v∂tφ =

(−∇φ− ∂tA) +
1
c2

v∂tφ = Ea + Er

(41)

So we get to parts, the usual anti-symmetric electric field Ea and a rest anti-symmetric electric field Er

Then we differentiate the anti-symmetric magnetic potential to get

∂tÃ = ∂t(− 1
c2

v ×A) = − 1
c2

a×A− 1
c2

v × ∂tA =

∇×A− 1
c2

v ×E = Ba + Br.

(42)

In six-vector terms this gives

∂t(Ã− i

c
Aa) = (Ba − i

c
Ea) + (Br − i

c
Er). (43)

We can split this up and write Bµν in six-vector notation as

Ba − i

c
Ea = ∇×A− i

c
(−∇φ− ∂tA) (44)

and Eµν as

Br − i

c
Er = (− 1

c2
v ×E)− i

c
(

1
c2

v∂tφ). (45)

In tensor formulation we have for Bµν

Bµν =




0 i
cEa,1

i
cEa,2

i
cEa,3

− i
cEa,1 0 Ba,3 −Ba,2

− i
cEa,2 −Ba,3 0 Ba,1

− i
cEa,3 Ba,2 −Ba,1 0


 . (46)

For Eµν we can write the same tensor.

B. The Lorentz Force Law

The relativistic formulation of the Lorentz Force Law is

BµνJν = fµ (47)

When we apply it to our potential formulation we get

(∂tAµν)Jν = BµνJν + EµνJν . (48)

We have several possibilities to interpret this result. The most simple thing to do is to give every term its own force,
like in

fA
µ = (∂tAµν)Jν = BµνJν + EµνJν = fB

µ + fE
µ . (49)
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We do not however want to discuss the complications of our derivations, we just want to show how to derive the LFL
from Laue’s tensor dynamics in JA formulation.

If we go back to the torque tensor we have

(∂t(− 1
ρc2

Nµν))ρVν = BµνJν + EµνJν , (50)

and, if we assume ρ to be time independent, we get

− 1
c2

(∂tNµν)Vν = BµνJν + EµνJν , (51)

giving

− 1
c2

(∂tNµν)Vν = fµ. (52)

If we go all the way back to the stress energy tensor, written as Tµν = VµGν = JµAν we can write

− 1
c2

(∂tTµν − ∂tTνµ)Vν = fµ, (53)

for the Lorentz Force Law with a time independent charge density.

C. Gauss’ Law and Ampère’s Law as Maxwell’s Equations

We will not derive all four of Maxwell’s Equations but restrict ourselves to Gauss’ Law and Ampère’s Law. But
because the other two laws are just there dual parts in case of the homogenous forms, we talk about the two as
Maxwell’s Equations. They can be formulated as

∂νBµν = µ0Jµ. (54)

Thus the homogenous Maxwell Equations, when µ0Jµ = 0, can be derived from the potentials as

∂ν(∂tAµν) = ∂νBµν + ∂νEµν = 0. (55)

If we go back to the torque tensor we have

∂ν(∂t(− 1
ρc2

Nµν)) = ∂νBµν + ∂νEµν = 0. (56)

And if we go all the way back to the stress energy tensor

∂ν(∂t(− 1
ρc2

(Tµν − Tνµ))) = ∂νBµν + ∂νEµν = 0. (57)

In the case of the inhomogeneous equations we could perhaps have

∂ν(∂t(− 1
ρc2

(Tµν − Tνµ))) = µ0Jµ. (58)

IV. COMPARING EINSTEIN’S GTR WITH THE RELATIVISTIC MAXWELL-LORENTZ EM

Einstein’s GTR has the stress energy tensor as a fundamental input. The stress energy tensor has to have two basic
properties, it must be symmetric and it’s divergence must be zero ([8], p. 58). So Einstein’s Equations are valid for
those stress energy tensors who have

Nµν = Tµν − Tνµ = 0 (59)

and

∂µTµν = 0. (60)
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If we look at the Lorentz Force Law as

(∂t(− 1
ρc2

Nµν))Jν = BµνJν + EµνJν , (61)

and at Maxwell’s Equations as

∂ν(∂t(− 1
ρc2

(Tµν − Tνµ))) = µ0J
A
µ . (62)

then it is immediately clear that these two theories cannot possibly be unified. The restrictions put on Einstein’s
GTR are axiomatic in character, which implies that the unification of the phenomena of gravity with the phenomena
of electrodynamics can only be achieved by abandoning GTR. The General Theory of Relativity as a theory of gravity
seems much to restricted to be unifiable with Maxwell-Lorentz electrodynamics. I emphasized the word restricted
because I do not claim GTR to be a wrong theory. In those regions of reality where the axioms of GTR are valid, the
theory of GTR, being bases on those axioms, is valid. What I claim is that in the regions where Maxwell-Lorentz’s
electrodynamics can be successfully applied, Einstein’s restrictions put on his stress-energy tensors are such that they
cannot be fulfilled and so GTR cannot be applied.

There are however two severe restriction put on this conclusion. First of all, we have shown a mathematical
possibility, not a physical reality. The existence of a mathematical derivation of Maxwell-Lorentz’ RED from Laue’s
RTD does not automatically imply it’s physical reality. The equation a = −c2∇ for example is a mathematical tool
we need in the derivation, but its physical relevance is unclear. Asking if the mathematical derivation makes physical
sense is, however, not a simple question but contains an entire research program. The secondly restriction put on
our conclusion comes from the use of the pseudo gravitational stress energy tensor tµν in GTR. This pseudo tensor
functions as a save the theory tensor in those cases where the conservation of energy and the being zero of ∂µTµν are
not fulfilled. The pseudo tensor does not have to be symmetric, nor does ∂µtµν have to be zero, so without doubt
the pseudo gravitational stress energy tensor tµν can also be made flexible enough to ”save” the unification project of
GTR with Maxwell-Lorentz electrodynamics from our objections. (As such, the pseudo tensor tµν strongly resembles
the Poincaré stress energy tensor as it was and still is used in relativistic electrodynamics for exactly the same reasons,
to save the theory in case of violation of the conservation of energy [3].)
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Invariance of electrodynamics equations relative to the group of transformations should have close 

connection with non-invariant properties of transformations for partial differentials of space-time. If 

the connection has observed consequences, they should appear in moving media electrodynamics: 

in tasks, where a source, a receiver, boundaries between media and the media move with different 

velocities. 

 A fundamental aspect of the question is that moving media electrodynamics equations were 

tested in some special cases and they weren’t tested for 3-dimensional tasks. An applied aspect is an 

answer on the question: How do readings of an interferometer moving around the Earth depend on 

its position and orientation? It’s cost to be noticed that dependence on a Earth rotation rate was 

found in an Sagnac-type interferometer. 

 An analysis of Michelson-Morley-type experiments allow to assert that invariance of the result 

is provided with very high degree of accuracy. One can made the conclusion after calculating with 

account: terms of second order smallness 
2β , contraction of interferometer length and its 

elements, alteration of source frequency, and radiation frequency when it reflects from moving 

elements, variation of reflection angles from moving elements. 

 The Fizeau’s interferometer (fig.1a) is more interesting for analysis. There is no an unique 

inertial reference frame (IRF), in which all elements rests, therefore, in the case we cannot pass 

from a rest IRF to a moving IRF. As composition of velocities for the interferometer and the 

medium should satisfy to relativistic law, it is intrinsic to assume that if non-invariant properties of 

partial differentials can have observed appearances, they will be found in non-linear terms of a 

solution of the dispersion equation. 

 Let us to consider the Fizeau’s interferometer in the IRF, in which the interferometer rests, that 

is 0/ == cvβ , where c  is light velocity in vacuum. u
r

 is water velocity in the interferometer 

IRF, and cun /2 ±=β . The invariants 0sin 00 === ϑkkI tt , 001 )1( ωβω =−=− I  

corresponds to normal incident beams [1]. In the case parameters 0
1

==
I

I
d t

, 
2
2nQ =  are 

contained in the solution of the dispersion equation. 

 Then a wave vector for a refractive beam is 

2
2

2
2

2
22

2
220

2
1

)1()1(

n

nn
n

n

nn

c
k

β
ββω

−

−+−−
= .       (1) 

 Difference between beam passages will depend on time of light propagation in opposite 

directions: 

2
2

2
2

2
22

1,22,2

0

120
1

)1(4
)()(

n

n
nn

n

nl
kk

lc
tt

c

β
β

λλωλ −

−
=−=−=∆ .  (2) 

 For parameters of the Fizeau’s experiment [2] m4875,1=l , m/s059,7=u , 526,0=λ mkm, 

33,12 ≈n  we have got 170,00 =∆ . A shift 23,0=∆  was observed in the Fizeau’s experiment, the 

value is explained with the fact that water velocity along an axis of the tube was more than an 
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average value for u  which was used in calculations. A second order term  
152

2
2
2 107,1 −×=nn β  

is very small and it doesn’t influence on results. 

 

 

 

 

 

 

 

 

 

 

  a). 

 

 

 

 

 

 

 

 

 

 

  b). 
 

Fig. 1. Schemes of interferometers with two passages (а) and single passage (b), in the interferometers light 

from a laser L  propagates in a moving medium with velocity u
r

. A photodetector PD  register interference 

fringes (IF). Velocity u
r

  is given in an observer IRF. The interferometer moves with velocity  v
r

 to the right 

( 0/ >= cvβ ) or to the left ( 0<β ) relative to the observer IRF. 

 

 Let us consider the interferometer moving with velocity v  relative to the IRF. First of all e will 

consider the case when light beams pass a tube one time (fig.1.b). Then, )1(11 βω −=− I ,  here 

1ω  is a source frequency in a n observer IRF. The expression (1) will have a view 

( )

( )( )
2
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2
22
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−= .     (3) 

 Here u  is velocity in IRF where the interferometer moves. The velocity in an interferometer 

IRF is u′ , in the case 

n

n
n

2

2
2

1 ββ
ββ

β
′+

′+
= .              (4) 

 By substituting (4) in (3), we will get 

( )( )2
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2
2222
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nnnn
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n
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= ,   (5) 

 A sign before n2β  changes in the expression. Path difference will be calculated  
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( )( )2
2

2
2

2
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ββ
β

λ ′−+

−′
=∆ .           (6) 

 Due to Doppler’s effect a wave length is equal to 
β
β

λλ
+
−

=
1

1
01 . Taking into account a 

kinematical shift of the interferometer, a path in a medium increases  )1/(1 β−= ll , and also 

there is the contraction effect  
2

01 1 β−= ll . A resulting shift of IF is equal to 

( )( )2
2

2
2

2
22

0

0

11

)1(2

n

n

n

nl

ββ
β

λ ′−−

−′
=∆ .          (7) 

Difference in interferometer readings when  0=β  and 0≠β  will be equal to 

00 2/ ∆≈∆−∆ β .           (8) 

 Thus, maximal variations for the IF shift in the interferometer moving relative to the Sun with 
410−≅β  and with different orientations of the interferometer to velocity vector would have order 

of a value  
5

0 107,1 −×±=∆±=∆ βδ  (of fringe). 

 Let us consider a complete scheme of the Fizeau’s interferometer and estimate an IF shift with 

account dispersion in a material. In the case we have 
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In limit  02
2 →′

nβ  and 02 →′
nββ  we have 
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 Here are ( )β
β
β

+≈
−
+

= 1
1

1
0001 kkk , ( )β

β
β

−≈
+
−

= 1
1

1
0002 kkk .          (11) 

 For the case when n2ββ >>  refractive indexes are 2,12,2 nn ≈ , 1,11,2 nn ≈ . Then 

substitution to (9) gives 

( )( ) ( )( )
2

2
2,1

2
1,12

1

11112

β

ββ

λ
β

−

−−++−′
=∆

nnl n
.     (12) 

 In non-dispersion approximation when nnn == 2,11,1  we will get 
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( )
2

2

2

1

14

βλ
β

−

−′
=∆

nl n
.            (13) 

 As the expression was received for limits 02
2 →′

nβ  and 02 →′
nββ , the term 

2β  can be 

taken into account, hence, it gives slight contribution to interference fringe shift and it is equal to 

0
2∆β . 

 Influence of dispersion may be estimated in the first approximation in the following way 

δ+≅≈ nnn 2,12,2 , δ−≅≈ nnn 1,11,2 , nn δδ −∆= ,   (14) 

where n∆  is variation of refractive index n  due to motion of a boundary between two media, nδ  

is variation of refractive index n  due to length difference of waves which are incident onto the 

boundary. 

 By taking into account the dispersion from the expression (12) we have 

( )
2

22

2

1

124

β

δβδ

λ
β

−

−−+′
=∆

nnl n
.        (15) 

 As the variations n∆  and nδ  have different signs, we can neglect 
2δ , more over 

22 n<<δ  

and the expression (15)  can be reduced to the classical result (13).  

 Let us write down exact expressions for wave vectors and frequencies, which contain 
2

2nβ ′  and 

n2ββ ′  to estimate influence of dispersion more precisely. Also, we will use an experimental tested 

dependence for a refractive index of optical glass on wave length of radiation.  

 In the case the expressions (10) will take a view 
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Wave numbers are defined with a method of successive approximations. First of all an refractive 

index, which was measured in a IRF where a medium rests, is substituted in the expression (16). 

Moreover frequency of an incident radiation is defined. Then corresponding wave lengths are 

calculated in a moving medium. 
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 A refractive index is found for each wave length, for example, for 1,1n  the expression will 

correspond to:  
8
1,16

6
1,15

4
1,14

2
1,13

2
1,121

2
1,1

−−−− +++++= λλλλλ AAAAAAn .    (18) 

 Coefficients iA  are selected with respect to experimental results. The indexes 2,21,22,1 ,, nnn  

are analogically calculated. Then the indexes are substituted into (16) for the second time and wave 

numbers are calculated. When it is needed to increase accuracy of results t.e procedure can be 

repeated. The results of numerical experiments are presented in a table. Common parameters for all 

schemes were ì4875,1=l , ì/ñ059,7=u , cVV sz /)( +=β , here zV  and sV  are a daily 

velocity of the Earth, and an orbital velocity of the Sun. An refractive index for water 3314,12 =n  

was taken in the experiment. Thus, water dispersion wasn’t taken into account.  

 When we used the glass LK5, a refractive index was calculated with the formula (18) for each 

beam and passage in dependence on a motion direction and a frequency of incident radiation, 

respectively. It has average value 476615,12 =n . Approximation without dispersion meant that 

refraction onto a moving boundary between two media was calculated for a refractive index and. In 

a real case after refraction onto a moving boundary between two media a frequency of incident light 

changed that leads to recalculate a refractive index for a moving medium. The results of 

calculations with dispersion on a boundary between two media are collected in the third and sixth 

rows of the table. Values ∆  and ∆′  are presented as absolute those. 
 

Type of 

interferometer,  

Its parameters 

Shift of interference fringes  

∆−∆′  

 

∆+∆′  0>β  0<β  

∆  ∆′  
1. One-passage, 

526,0=λ mkm, water 

without dispersion 

 

1,0283246
110−×  

 

1,0288774
110−×  

 

5,53
510−×  

 

2,057202
110−×  

 

2. One-passage, 

6328,0=λ mkm, 

LК5, approximation 

without dispersion 

 

1,3054644
110−×  

 

1,3062296
110−×  

 

7,65
510−×  

 

2,611694
110−×  

3. One-passage, 

6328,0=λ mkm, 

LК5 with dispersion 

 

1,3056019
110−×  

 

1,3060920
110−×  

 

4,90
510−×  

 

2,611694
110−×  

4. Two-passages, 

526,0=λ mkm, water 

without dispersion  

 

1,7094844
110−×  

 

1,7094844
110−×  

 

0 

 

3,4189688
110−×  

5. Two-passages, 

6328,0=λ mkm, 

LК5, approximation 

without dispersion  

 

2,6117071
110−×  

 

2,6116809
110−×  

 

-2,62
610 −×  

 

5,2233879
110−×  

6. Two-passages, 

6328,0=λ mkm, 

LК5 with dispersion 

 

2,6117186
110−×  

 

2,6116694
110−×  

 

-4,92
610 −×  

 

5,2233879
110−×  

 

 First of all it is necessary to notice that the sum ∆+∆′  is equal to the value given in the 

corresponding column for all schemes with 0=β . Therefore, resulting shift of IF doesn’t depend 

on the fact an interferometer moves or doesn’t move when a direction of motion is changed. 

Moreover, the difference ∆−∆′  is equal to zero in the case. 

 It can be noticed from the given values ∆  and ∆′  in the table that the values ∆  and ∆′  have 

some difference for different signs 0>β  or 0<β . 
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 In the first scheme the difference ∆−∆′  is equal to 022 ∆≅∆ βδ , which was obtained from 

the expression(8). The magnitude 5,53
510−×  is less than an error in the Fizeau’s experiment in 

three orders. The result was received without account dispersion in moving water. As it is difficult 

to take into account dispersion in water, we used light glass LK5, for which dispersion coefficients 

were experimentally defined. 

 In the second row of the table results are given in approximation without dispersion. The 

difference ∆−∆′  increased due to a coefficient )1( 2 −n  was larger for the glass. 

 In the third row of the table results are given with dispersion. The dispersion in material of 

moving glass decreased the difference ∆−∆′  on 36%. Estimation of dispersion influence was 

carried out for stationary glass and dispersion coefficients provided calculation error 
5101 −×±  

which was calculated with the expression (18). 

 In two passages schemes the difference ∆−∆′  decreased due to compensation of light 

dragging effects in a moving medium for opposite direction of motion. Really, the difference is 

equal to zero in the fourth row, the value in the fifth and sixth rows is considerable less than in the 

one-passage scheme with dispersion. In whole, it can be concluded that variations of ∆  are slight 

and the maximal value ∆−∆′  is equal to 4,9
510−× . We can notice that that variations of ∆−∆′  

depend on refractive index 2n , length l  and velocity u
r

 and β
r

. Carrying out a similar experiment 

can allow to find out is there a dependence ∆−∆′  on spatial orientation of an interferometer. If a 

result is zero, we can define maximal limit for β
r

 in the case. 

 The given schemes of an interferometer are not optimal from a view point of experiment. The 

one-passage scheme is not stable to perturbing factors; the two-passage scheme has low sensibility. 

Besides, there are interferometers which have several orders higher measurement accuracy, for an 

example, interferometers for gravitational wave detection [3]. But distinctive peculiarity of 

interferometers, which are interesting for us, is availability of a moving medium. The medium will 

bring in vibrations in an interferometer, hence, as measured value of IF shift is not connected with 

motion of an element, we can use a compensation scheme when motion of any element leads to the 

same influence on each interfering beam. 

 A scheme with a rotating disc, close to given that [4], can be alternative. As light propagates in 

a rotating disc with 3-dimational presentation of velocity, we can use corresponding integral 

equations [5] for precise description. In such schemes we can observe violation of the Snell’s law, 

which can considerably influence on results, especially with account dispersion. Carrying out the 

experiment could provide testing electrodynamics equations with 3-dimational presentation of 

velocity law. 

 This work was supported by Grants Council of the President of Russian Federation (grant № 

MD-170.2003.08). 
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According to Hubble's law 

Hrcz =   ,                                                                                                   (1) 

where с – speed of light in vacuum; z – red shift; H – Hubble's parameter, r – distance up to object.  

Believing as a first approximation, that 

1)(2,0lg +−= Mmr   ,                                                                                (2) 

Where m – relative, and M – absolute star magnitude of object. 

The joint decision (1) - (3) gives the linear Hubble's m = m(lg z) in the form:  
5  lg 5   lg 5   z lg 5 −+−+= cHMm    .                                                         (3) 

The linear law (3) is not traced on the diagram m ↔ lg(сz)  in the field of quasars because of a 

high dispersion of absolute star sizes of quasars.     

In [1] the phenomenon gravitational self-lensing is described, according to which light beams 

from large space object, deviating in a gravitation field of the same object, cause amplification its 

luminosity, that leads to growth of star magnitude m of object against valid for size: 

Rrrm g  lg 10   lg 5    lg 5 +−−=∆    ,                                                              (4) 

where R – geometrical, and rg – gravitational radius of object.  

The size m can be corrected by corrective value –∆m (4), therefore the linear law m = m(lg z) 

(3) in view of (1) is led to a kind: 

5lg10lg5lg10lg5lg5 −−+−+=− HrRMczczm g   .                           (5) 

For the comparative analysis (3) and (5) sample of 60.000 quasars and active galactic kernels of 

a database [2] has been used. It is established{installed}, that the factor of correlation between the 

left and right parts of dependences increases from 0,002 in case of (3) up to 0,675 in case of (5) at 5 

%-th level of the statistical importance according to w-criterion. Thus the estimation of parameter 

of Hubble H appears still impossible because of absence of authentic data on parameters R, rg, and 

M of quasars.  

However, the narrowness of statistical intervals for estimations of parameters of the equation of 

regression (5) testifies to an opportunity of an estimation of relative change of parameter of Hubble 

eventually, i.e. about an opportunity of an estimation of parameter q0 of accelerations of expansion 

of the Universe according to the nonlinear equation of Hubble 

 ( ) 22

01
2

1
RHq

c
Hrcz +⋅+=   ,                                                                     (6) 

that can be reached by introduction in (5) a member 1,086·(1 – q0)·z, nonlinear on lg cz. 

Besides using available estimations of parameter of Hubble H, thus the radius and time of ex-

pansion of the Universe can be estimated. 
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Macroscopic nonlocality has its origin in quantum nonlocality and consists in correlation of different 

dissipative processes without any local carriers of interaction. Nonlocal correlation obeys weak causality 

principle. It involves the possibility of superluminar and even advanced transaction between the random 

dissipative processes without violation of relativity principle. The experiments on observation of nonlocal 

transaction of the lab probe-processes with the large-scale natural source-processes, in particular, the solar 

activity, have been performed. As a result advanced correlation has been reliably detected and its nonlocal 

nature has been proved by Bell-type inequality violation. Due to high level of this correlation and large time 

of advancement, forecasting applications proved to be possible. 
 

1. Introduction 
Apparent violation of relativity principle for the entangled states, which had been formulated as 

well known Einstein-Podolsky-Rosen paradox, at present is quite understood in the framework of 

quantum nonlocality concept. Superluminar communication is possible namely due to absence of 

any local carriers of interaction between the particles which are in the entangled states. But it is 

possible to use this nonlocal channel for transmission only unknown information (information about 

unknown states) and therefore «superluminar telegraph» is impossible, according to relativity 

theory again. In spite of this restriction, phenomenon of quantum nonlocality is such surprising, that 

attracts increasing attention, in particular, in relation to its possible macroscopic manifestation. 

On the other hand, more than 30 years ago N.A. Kozyrev had suggested causal mechanics 

theory and conducted the various experiments [1,2], which originated from the idea of fundamental 

time asymmetry, but led to macroscopic phenomena similar to microscopic nonlocal ones (with 

exception of dissipation role). Specifically, he had observed correlation of the probe dissipative 

process (in the telescope detector) with large-scale ones of the stars with three time shifts, 

corresponding classical retardation, symmetrical advancement and zero between them, i.e. 

instantaneous [3,4]. According to causal mechanics such correlation of different dissipative 

processes were explained by not any local carriers of interaction, but by some physical properties of 

time as an active substance. Kozyrev’s theoretical and experimental conclusions were so 

unexpected (with weakly formalized theory and not too strict performance of the experiment), that 

they could not be accepted in due course. 

But in 1990s similarity of the results of causal mechanics and some recent ones of quantum 

mechanics had become obvious. Understanding of causal mechanics effects as possible 

manifestation of quantum nonlocality at the macro-level had allowed to perform the experiments 

showed availability of advanced correlation [5-13]. In this article we generalize obtained results and 

pay particular attention to the most recent ones. In Sec. 2 we shortly describe theoretical ideas and 
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in Sec. 3 – experimental ones. In Sec.4 we summarize the main previous experimental results, and 

in Sec.5 – the most recent ones. We conclude in Sec.6. 

 

2. Heuristic model of nonlocal transaction 
By the early 1990s formalization of axiomatic of causal mechanics, including the concept of 

causality itself had been gained [8]. Furthermore, an analysis had shown that properties of 

Kozyrev’s correlation of the dissipative processes were similar to ones of quantum nonlocal 

correlation [5,6,13,15]. In particular, interpretation of quantum nonlocality in the framework of 

Wheeler-Feynman action-at-a-distance electrodynamics [10] substantiates existence of the signal in 

reverse time. Interference of the retarded and advanced luminar signals may lead to apparent 

superluminar velocity (more precisely: any effective time shift between cause and effect inside of 

space-like interval is allowed). According to J.G. Cramer weak causality principle [16] it leads to 

observability of advanced correlation of the unknown states [17] or, in other words, the random 

processes. Next, the idea of asymptotic persistence of quantum correlation in the strong macro-limit 

had appeared, which had been verified in the numerical [18] in real [19] experiments. A new way of 

entanglement formation via a common thermostat (which the electromagnetic field could be 

served} had been discovered [20] and this way required dissipativity of quantum-correlated 

processes. It means that dissipation may not only lead to decoherence, but on the contrary, play a 

constructive role. 

Our idea consisted in inclusion of dissipation in the framework of quantum action-at-a-distance 

electrodynamics [21], axiomatic of which is akin to axiomatic of causal mechanics [6,9,15]. It 

allowed to suggest the following equation of macroscopic nonlocality, describing factual Kozyrev’s 

results [5-7,9,10]: 

dV
v

x
t

x

s
S )(

2

2
2

2
−= ∫ δσ

&
& ,                                                              (1) 

where S&  is the rate of entropy production in the absorber (probe-process in the detector), 
424 / emh≈σ , m is electron mass, s&  is density of entropy production in the sources, velocity v is 

subluminar:   v
2
 ≤ c

2
, and integral extends over infinite volume V. δ-function shows that transaction 

progresses with finite symmetrical retardation and advancement. If the transaction occurs through a 

medium by interpapticle chains via microscopic Wheeler-Feynman fields, resulting time shifts of 

both signs are large. 

The simplest Eq.(1) does not take into account absorption by the intermediate medium. Its 

influence, however, is very peculiar. In Ref. [21] it has been proved, that although action-at-a-

distance electrodynamics equations are time symmetrical, fundamental time asymmetry manifests 

itself via absorption efficiency: if the retarded field is perfectly absorbed, then absorption of the 

advanced field, by contrast, must be imperfect. It may lead to that level of advanced correlation of 

the probe-process with source-processes proved to be higher than retarded one. 

 

3. Performance of the experiments 
The task of experiment is to relate the entropy change in the probe-process and source-processes 

according to Eq.(1) under condition that all classical local influences (temperature, pressure, 

electromagnetic field, etc.) are suppressed. 

As of now there are two experimental setups- GEMRI (Geoelectromagnetic Research Institute 

RAS) and CAP (Center of Applied Physics BMSTU). In the former nonlocal correlation detectors 

based on spontaneous self-potential variations of weakly polarized electrodes in an electrolyte and 

on spontaneous dark current variations of the photomultiplier are used. In the latter the detector 

based on spontaneous dispersion variations of ion mobility fluctuations in a small electrolyte 

volume is used. Theory of detectors [5,13,22] allows to relate the measured signal with the rate of 

entropy production in the probe-process, i.e. to calculate left-hand side of Eq. (1) and consciously to 

take exhaustive steps on local influences (noises) suppressing. All technical details about design of 

detectors and their parameters are presented in Ref. [5-9]. 
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As a source-processes the large-scale helio-geophisical processes with big random component , 

and in contrast – determined lab processes (phase transitions) were used. Since for the latter only 

retarded correlations is observed [23], only the former are considered next. 

The experiments with natural helio-geophisical processes were long-term (with duration not 

less than several months). They were conducted in 1993-96 with the electrode detector; in 1996-97 

with four detectors: the electrode and photocathode detectors of GEMRI setup, spaced at 300m one 

more electrode detector and spaced at 40 km (ion mobility detector of CAP setup; and in 2001-2004 

with described above GEMRI and CAP setups.  

 

4. Main previous experimental results 
Below we summarize the results of long-term natural experiments described in detail in Ref. [5-13]. 

These results were repeatedly reproduced by different time series with all types of detectors (though 

the most of them were obtained with the electrode detector, which turned out most reliable one). 

The signals of all detectors are synchronously correlated. Analysis has shown that signals are 

formed by some common causes, but their influence can not be local. 

Such common causes proved to be (in order of decreasing influence): solar, synoptic, 

geomagnetic and ionospheric activity. Advanced response of the detector signals to these processes 

has been revealed reliably. Retarded response is always less than advanced one. Order of value of 

advancement (and retardation) is large – from 10 hours to 100 days. Magnitude of response and 

time advancement increases along with the space scale. For relatively small space scales 

advancement and retardation times are symmetrical and in such cases the synchronous response is 

added. For relatively large space scales retardation time is more than advanced one. 

Nonlocal nature of correlation of the probe-processes with the source-processes has been 

proved by Bell-type inequality violation by analyzing of two kings of local causal chains: external 

temperature-interval temperature-detector signal [5,7-9] and solar activity-geomagnetic activity-

detector signal [12]. 

Heuristic model of nonlocal transaction has been verified quantitatively by the example of 

geomagnetic activity source-process, which admits relatively simple calculation of right-hand side 

of Eq. (1). In particular, experimental estimations of cross-section σ proved to be of order 10
-2

 m
2
,  

i.e. of order of an atom cross-section in agreement with theoretical expectation. 

The level of advanced correlation proved to be enough for the employment of macroscopic 

nonlocality effect for geomagnetic, synoptic and solar activity forecast. 

 

5. New results 
Among considered before source-processes the solar activity is most important as the most large-

scale one and the primary cause of many other ones. As convenient index of the solar activity the 

radio wave flux was chosen, because the detectors were perfectly insensitive to its local influence. 

On the other hand, the radio wave flux is well qualitative measure of the entropy production in its 

source, that is solar atmosphere. Furthermore, it turned out that detector signal was most correlated 

with the solar radio flux in the center of range of 9 standard frequencies (254…15400 MHz), around 

the frequency 1415 MHz [8,9]. This frequency corresponds to emission from the upper 

chromosphere - lower corona level, that is just from the level of maximal dissipation the magneto-

sound waves energy. Next, it was found that detector response on solar activity is advanced with 

several time shifts around τ = 130 days for frequency 1415 MHz. Lastly, violation of Bell-type 

inequality was verified with the geomagnetic activity as an intermediate source-process (as an index 

of which Dst-index, reflecting the most large-scale dissipative processes in the magnetosphere, was 

used). Taking into account responsibility of those conclusions, their new experimental 

corroboration is necessary. 

For this purpose we used data of the most recent experiment, namely data of continuous 

measurements with the electrode detector of GEMRI setup. As compared with the previous 

experiments, the system of its temperature stabilization was improved and thus signal/noise ratio 
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was magnified. Duration of time series was 1 year (10/19/2002 – 10/18/2003). The detector signal 

(potential difference) U was measured accurate to 0.5 µV with data sampling 1 hour. 

As solar activity data we took daily solar radio flux R (published in «Solar-Geophysical Data» 

at mentioned above frequency 1415 MHz and two adjacent ones: 610 and 2800 MHz. Time series 

was taken for about 3 years (beginning 371 days before and finishing 371 days after the ends of U 

series). As geomagnetic activity data we took international hourly Dst-index for the same time as R. 

For correlation with R, U, and Dst data were previously daily averaged. 

Whereas in processing of earlier experimental data [5-11] we had used, besides traditional 

statistical method, the causal analysis as the most sophisticated informational-statistical method, the 

achieved level of knowledge allowed, beginning from Ref. [12] and ending with this study, to 

restrict our self by usual correlation analysis (with exception of Bell-type inequality problem). But 

at the same time we have been considering problem of detection of advanced correlation in more 

distilled performance. The matter of fact is, advanced correlation is physical property only the 

random processes. If the determined, that is in given case periodic, components of variations are not 

suppressed, then advanced cross-correlation could be amplified by auto-correlation. It would be 

useful in forecasting practice, but here we are going to investigate namely advanced cross-

correlation. Therefore we have to suppress the periodic components. The main periodicity in R 

(having a response in U [10,11]) is synodic solar rotation period. In addition, a lot of geophysical 

processes have annual period. For these reasons U and R data were wide-band filtered in the period 

range 183
d
 >T>28

d
. (For Dst because of splitting of the spectral line corresponding to the solar 

rotation period, optimal lower bound of the wide-band filtration was more: 32
d
 [13]). 

After this filtration the correlation function URr  was calculated in the time shift range τ = ± 371
d
 

(τ<0 corresponds to retarded correlation retr  , τ > 0 – advanced one advr ). The result for frequency 

of R 1415 MHz is presented in Fig.1. Correlation time asymmetry 

06.018.1||max/||max ±=ret

UR

adv

UR rr , that is quite reliable. Maximal correlation 03.092.0 ±=adv

URr , 

is at advancement τ = 130
d
. At the adjacent frequencies the main maximum is also at τ = 130

d
, but 

level of correlation is slightly less: for 610 MHz 04.088.0 ±=adv

URr  and for 2800 MHz 

03.090.0 ±=adv

URr . That is the frequency 1415 MHz is optimal. 

 
Fig. 1 Correlation function URr  of the detector signal U and solar radio wave flux R. Negative time shift 

τ corresponds to retardation U relative to R, positive one-to advancement. 
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But the solar activity excites much more close (to the detector) the process of geomagnetic 

activity and it is legitimately to speculate that latter is direct cause of U variation. In Fig.2 the 

correlation function UDstr  is shown. The main extremum of correlation is almost at the same time 

(about 10
d
 more), but it is weaker: 04.087.0 ±−=adV

UDstr . Correlation time asymmetry is also weaker: 

06.011.1||max/||max ±=ret

UDst

adV

UDst rr . On the other hand, though the Dst- variations are excited just 

by solar activity, due to complexity of their relation, their correlation (negative by nature of Dst-

index) is rather weak. For given serieses Dst and R at 1415 MHz the main extremum 

07.038.0 ±−=DstRr   is observed at τ = - 10
d
 (Dst is retarded relative to R). 

 
Fig. 2 Correlation function UDstr  of the detector signal U and Dst-index of the geomagnetic activity. 

Negative time shift τ corresponds to retardation U relative to Dst, positive one – to advancement. 

 

Thus we have 03.092.0 ±=URr , 04.087.0 ±−=UDstr  (both advanced) and 07.038.0 ±−=DstRr  

(retarded). Such relationship suggests that connection of U and R is direct, i.e. nonlocal. But all 

three links might be nonlinear. Indeed nonlolinearity of (classical local) R-Dst link is well known, U 

is related with left-hand side of Eq.(1) in nonlinear manner [8,9,13], as well as Dst and ,probably, R 

[5-9] - with its right-hand side. 

As correlation function is not representative for nonlinear dependence, adopt more strict way 

for evidence and consider the following Bell-type inequality [7-9,12]: 

                        ),max( ||| RDstDstURU iii ≥ ,                                                           (2) 

were i are the independence functions. The independence functions are terms of causal analysis 

(e.g.[14]) and defined as )(/)|(| YHXYHi XY = , where )|( XYH  is conditional Shannon entropy 

and )(YH  is marginal one of the variables X and Y. 0 ≤ XYi |  ≤1; 0| =XYi  if Y  is one-valued function 

of X, 1| =XYi  if Y is not depended on X. Value of XYi |  is equally fit for linear or any nonlinear type 

of dependence Y on X. The fulfillment of Ineq.(2) is sufficient condition for locality of connection 

along the causal chain R→Dst→U (since any local solar influence on the detector can not come 

avoiding the magnetosphere that is source of Dst variations, and connection between the origin and 

end of the chain can not be stronger than in the weakest of two intermediate links). 
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All three independence functions of Ineq. (2) were calculated with mentioned above time shifts. 

For estimation of their stability all three serieses were alternately noised by 21% (by power) flicker-

noise [8]. 

The results are: 01.0

02.0| 46.0 +
−=RUi , 00.0

02.0| 51.0 +
−=DstUi , 00.0

02.0| 83.0 +
−=RDsti . Ineq. (2) is reliably violated, 

therefore connection R→U is nonlocal.  Even choice of optimal frequency of R 1415 MHz is not 

crucial: for 610 MHz ,50.0 03.0

01.0|

+
==RUi  for 2800 MHz  02.0

01.0| 49.0 +
−=RUi , Ineq.(2) is violated, though 

slightly less. 

It is possible to utilize advanced nonlocal correlation for the forecast of solar activity. As 

connection of U and R is far from δ-correlated the plural (and probably nonlinear) regression is 

necessary for correct forecasting. But for demonstration of the principal possibility we may simply 

shift corresponding annual segment of R series (at 1415 MHz) forward relative to U one by τ = 

130
d
. The result is shown in Fig.3. The forecasting effect is evident quite clearly. The peculiarity of 

this forecasting picture is that U curve is smoother than R one (with the same filtration). Therefore 

U responses mainly on long term and, correspondingly, large-scale disturbances of R. It should be 

emphasized that U forecasts namely random component of R, which is eluded forecasting by any 

classical methods. 

 

 
 

Fig. 3 The detector signal U forecasts the solar radio wave flux R with advancement 130 days. Origin of 

time axis corresponds to 01/07/2003. 
 

6. Conclusion 
The experiments on the modern level of strictness confirm earlier Kozyrev’s results on surprising 

manifestation of reversibility in irreversible time – the possibility of observation of future random 

states (undetermined by previous evolution). Advanced nonlocal (violating Bell-type inequality) 

correlation of the practically insulated macroscopic dissipative processes has been detected quite 

reliably. It can be utilized, in particular, for long-term solar activity forecasting. 

But the most important, although very difficult, problem at present is development of the theory 

of mechanism of persisting of quantum nonlocality on the macro-level, because our heuristic model 

is, of course, very rough and might be naive approximation of reality. 
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The motion of a material point  relatively of the extended  massive body moving   on a circular orbit in the 

Newtonian force field is considered. The possibility of unimpactive transformation of any motion of this 

point  to periodic by using a cord with both ends that are fixed on a body is studied. Such cord may be named 

'leier' ( it's the dutch sea term  meaning 'handrail'). The algorithm of such transformation is constructed and 

conditions of its practicability are deduced. 

 

1.  Introduction 
Now frequently there is a question about protection of orbital stations from ’space garbage’, i.e.  

parts of spacecrafts and missiles that lost control and freely moves on a space. The catching of such 

bodies before their collision with station is the cardinal solution of this problem. We shall notice, 

however, that change of motion by jump at the moment of the capture can be not less dangerous, 

than direct collision. The similar problem arises in a case when it is necessary ‘to pull down from an 

orbit’ the satellite or the spacecraft for its repair, rescue of crew, removing of the old equipment, 

etc. - in this case the capture with shock can be catastrophic for grasped object too. In this paper the 

possibility of the soft (non-impactive) transformation of motion of the free-moving object with the 

help of special tethered system is proved. 

Motion of an uncontrollable object of enough small mass relatively of the massive station  

taking place on a circular geocentric orbit  are considered. The station is supplied by 'leier 

constraint', that is a cable which both ends are fixed on the station (from the Dutch 'leier' - a cord 

with fixed ends) . The device, capable to grasp such object can move along the cable. The 

possibility of such grasping without jumps of relative velocity and acceleration of the object is 

studied. The motion along a cable both up to, and after gripping should be non-impactive and occur 

only by inertia (in some cases the initial impulse for the gripper's motion is necessary). 

 

2. Statement of the problem 
We consider the massive body O, moving on the  Kepler's circular orbit in Newtonian central force 

field. The body is supplied with spar АВ along which two sliding piece C and D can move. 

Weightless inextensible cable can be reeled up the bobbins E and F which are fixed on the sliding 

pieces. The gripper G can move along a cable (fig. 1.). We assume that the mass of G is so small, 

that its influence on the motion of O is insignificant.  

 If the sliding pieces don't moves along the spar and the bobbins does not rotate, motion of the 

gripper G is limited to an ellipse with focuses that are in points C and D and with the big semi-axis 

that equals half of length of the unwrapped part of a cable. We shall examine only those situations 

when one of axes of the ellipse is directed to attractive center (i.e. if the spar is "vertical" or 

"horizontal"). Motion on the border of such ellipse or "constrained" motion is investigated in [1,2] 

in the assumption, that the size of the ellipse are small in comparison with radius of the orbit. 

Besides in [3] are classified the periodic trajectories consisting of  the free motion segment ( the 

motion with non-tense cable) and of the arc of the ellipse, such that transition between parts occurs 

unimpactively. In particular, it is shown, that any of such periodic trajectory is symmetric about a 

"vertical" axis of an ellipse.  

Let Oxy and O1x1y1 is two coordinates systems with accordingly parallel axes, such that Ox is 

directed as a tangent to an orbit, Oy is directed to attractive center and О1 is the center of the ellipse. 

Let's assume, that uncontrollable object H moving on a Kepler orbit is found near the body O and 

its trajectory is unlimited in frame of reference Oxy. 
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3. Algorithm of motion transformation 
Let's try to determine such positions of points C and D and such length of the unwrapped part of a 

cable that the part of the object's H trajectory that located in the ellipse limiting gripper's G motion, 

coincided with a part of free motion of a unimpactive periodic trajectory. According to 

classification of unimpactive periodic trajectories [3], two types of motion transformation of object 

H are possible. It is "oscillatory" type (at the left on fig. 2) and "rotary" type (on the right on fig. 2). 

The following sequence of actions results in transformation:  

- Calculation by elements of an orbit of point H of initial position of gripper (point К) and its 

keeping in this position till some moment,   

- Motion of gripper along a cable by inertia with fixed focuses C and D along the tense cable up 

to a point  M in which gripper meets object Н and "goes from constraint”, i.e. the cable weakens. 

"Oscillatory" motion begins with zero velocity. Some initial impulse is necessary for  "rotary" 

motion,  

- Free motion of object and gripper during which linking can be carried out, up to point L in 

which jointing G-H  "unimpactively goes to constraint » , 

- "Constraint motion" of jointing at the fixed bobbins and the tense cable up to point L (trajectory 

L-N-L-P-M-K-M or L-K-M) then free movement from M to L again begins, etc. 

Such algorithm possesses the following important qualities: 

- During all time of motion velocity and acceleration of object Н varies continuously,  

- Gripper's motion occurs on inertia (can the initial impulse is required), 

- Process of joining should not be in a moment. 

 

4. The law of free motion and the condition of leaving from constraint and an 

entrance to constraint 
Passing to dimensionless variables, we shall consider, that the period of rotation of O around 

attractive center is equal π2  and the maximal length of a cable is equal 2. Since we examine a case 

when the distance ОН is small enough in comparison with radius of the circular orbit, for the 

description of motion of point Н is possible to use known V.V.Beletsky model  [4,5].  Exchanging 

scale of dimensionless variables and saving for them the used earlier designations, we shall write 

down the law of motion of Н and of free motion of G as 





ν−+⋅=

+⋅=

fty

ttfx

cos2/1

sin2/3

1

1
, 

Where ν  characterizes a distance between the center of the ellipse  restricting the motion of a 

gripper,  and the circular orbit, and the parameter f is expressed through elements of an orbit of 

object  H by the formula 

ε

−
=

2

/1 00 ar
f , 

0r - the radius of a circular orbit, ε,0a  - big semi-axis and eccentricity of object H orbit. The 

moment 0=t  corresponds to crossing by point Н of axis 11 yO . 

 Moving of gripper on leier can be considered as motion on the unilateral constraint determined 

by an inequality 

( ) 2222

1

2

111 /,0, badaydxyxf =≤−+= , 

a and b are "horizontal" and "vertical" semi-axis of the ellipse. Let's consider the function 

( ) ( ) ( )( )tytxft 11 ,=ϕ . Then, similarly to [6], in the point of leaving from constraint  (М) and in the 

point of unimpactive entrance to constraint (L) the equations  

( ) ( ) ( ) 0,0,0 ,,, =ϕ=ϕ=ϕ MLMLML ttt &&&          (1) 

and inequalities  

( ) ( ) 0,0 >ϕ<ϕ LM tt &&&&&&              (2) 

are fair.  
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5. Details of the algorithm.  
Equations (1) allow to express the relation of semi-axises of the ellipse and ν  through f and Mt  by 

formulas  

( ) ( )
MM

MMMMMMM

tt

ttfttftt
d

3sinsin3

3sin4sin122sin212sincos36
:

2

−

−+−+−τ
= , 

( ) ( )( )
( ) ( ) MMMMMMM

MMMMMMMMMMM

ttttftttf

ftttttfttttftt

3sin4sin122sin212sincos36

3cos3cos93sin42sin782cos63sincos36
2

2

−+−+−

++−−++−
=ν  

 Coordinates of the point K, its velocity and also the moment of the beginning of gripper's 

motion can be calculated by Jacobi's integral from [3]. It is necessary to notice, however, that there 

are some restrictions on value Mt . First 0<Mt , second 0>d , thirdly, from inequalities (2) 

follows, that 

( ) ( )( ) 0cos4sin93sin342cos22sin39 <−++−− fttttftttt MMMMMMMM

. 

 It is possible to show, that for some set of values of parameters f and Mt  after passage of the 

linking G-H through the point L again there will be a weakening of the cable and a new entrance to 

constraint will be impactive.  

 Let's notice also, that at  1>d  spar АВ should be horizontal, and at 1<d  vertical.  

The motion transformation type of the object H can be determined on  a value of a constant of 

Jacobi's integral of the motion under constraint. Thus if  3/2<f  the constant of Jacobi's integral is 

so big, that joint movement of points Н and G will be rotary. If 3/2>f , rotary and oscillatory 

motion is possible, and if 3/2=f  unimpactive transformation of motion is impossible. 

 The diagram of various types of transformation is represented on fig. 3. In this figure: I - area of 

transformation to rotary type of movement with "horizontal" spar АВ, II - the same but with 

"vertical" АВ, III - area of transformation to oscillatory type from motion with "horizontal" spar АВ, 

IV - the same, but with "vertical" АВ. (Areas II and IV represent narrow strips on marked borders of 

areas I and II). Weak shading marks that part areas III in which after grasp there is an impact about 

the cable, by black color - a similar part of area I. 

 As the length of a cable cannot be infinite, relative velocity of free-moving object H at the 

moment of gripping is limited. Dependence of the maximal relative velocity at the moment of grasp 

from parameter f is represented on fig. 4. In this figure the values of iα  are determined by the 

equations 

ii

i

iii ff τ=τ
τ+

==α tan,
13

2
,arctan

2
 

 

6. About practical realization of  the algorithm. 
Literal practical realization of the described algorithm in most cases is impossible, since, apparently 

from fig. 4, capture of the object moving even with small velocity, needs big enough length of a 

cable. If value f is close to any of if , on a segment of free motion (ML) the object Н can leave on 

big enough distance from O, and the gripper cannot move together with him. However, if to 

consider only a problem of grasp, actually it is necessary to provide motion in a vicinity of a point 

of an entrance to constraint L. It is possible, if the cable has length, a little bit big, than double 

distance OL. Thus the motion under constraint after passage of point L can occur on an ellipse to the 

focuses which not necessarily lay in points C and D. It is enough to provide such motion of these 

points that true focuses of an ellipse laid on straight lines GC and GD during all time of " the 

constraint's motion", and the sum of distances from G to focuses does not vary. In particular, at 

oscillatory type of capture such approach allows at many times to reduce necessary length of a 

cable. 
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Исследование орбитальной устойчивости пробной частицы в 

задаче трех тел на основе модифицированной модели Калуцы-

Вессона 
 

Закиров У.Н. 
Институт механики и машиностроения КазНЦ РАН  

e-mail: zakirov@kfti.knc.ru 

 
В работе показывается возможности полевой теории Калуцы-Вессона (пятимерной теории 

гравитации [1]), моделирующей консервативную систему двойных звезд, взаимодействующих между 

собой; при этом переток массы-энергии оболочки звезд осуществляется через лагранжеву точку 1L ; 

пренебрегается унос массы-энергии через лагранжеву точку 2L  [2]. Оценка возмущения звезды 2 от 

звезды 1 осуществляется посредством решения уравнения девиации методом М.Ф. Широкова на 

основе известной метрики возмущающей звезды; в качестве теста рассматривается 

сколлапсированная звезда 2 (черная дыра, нейтронная звезда), с сильным гравитационным полем, 

окруженная аккреционным диском. Таким образом, масса звезд считается переменной. В этих 

условиях орбитальная устойчивость пробной частицы, движущейся вокруг черной дыры, зависит и от 

возмущения звезды 1, дополняя результаты [3].  

 

1. Построение функции Лагранжа-Дирихле на основе теории Калуцы-

Вессона 

Рассмотрим обобщенную статическую с условием цилиндричности по 
5x  метрику черной 

дыры вида  

( ) ( ) ( )25
55

2222

1

2
2

202 sin1

1

1 dxfdrd
r

fr

r

dr
fdx

r
fds

ba

ab

a

γφθθ
α

α

α
−+







 −−








 −

−






 −=
−−

+
,(1) 

где 

b

r







 −=
α

γ 155 , конформный параметр f  есть отношение
2

2

dS

ds
f = , 

2ds – инвариант в 

4-х мерном пространстве-времени (4D); 
βα

αβ dxdxgds =2
, ;3,2,1,0, =βα  

2dS – 

инвариант в 5-и мерном пространстве-времени (5D): 
BA

AB dxdxgdS =2
, 5,3,2,1,0, =BA .  

 В работах [1], [4] показано, что  

55
21 γBf += , ( )55γff = ,           (2) 

где 
2B  идентифицируется как удельный заряд материи; для простоты положим 

constkB ==55
2 γ , и значит, constf = . 

 Скалярное поле 55γ  будем определять выше как возмущение полной энергии поля. 

Константы a , b  являются результатом уравнения вакуумного поля в пятимерном 

пространстве 5D и удовлетворяют условию совместности  

122 =++ baba .               (3) 

 Таким образом, метрика (1) определяется константами a , b , α , 
f

, где α – 

гравитационный радиус, в общем случае зависящего от времени 
0x , ( )0xαα = ; по нашей 

гипотезе  

ds

d

ds

d ∗
−=
αα

,               (4) 
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где ( )0x∗∗ =αα – гравитационный радиус возмущающей звезды 1; именно (4) указывает на 

принятый постулат консервативности изучаемой системы.  

 В случае 1=a , 0=b , 055 =γ  мы имеем стандартное решение Шварцшильда общей 

теории относительности (ОТО); для него в работе [3] получен результат о существовании 

класса устойчивых круговых орбит при α3=r . В нашем случае из-за возмущения от звезды 

1 результат может отличаться, что и будет показано ниже. В случае Шварцшильда имеем 

интеграл вида     
221

1

cq

r
h

−

−
=

α
,                (5) 

где 
2q – квадрат синхронизированной скорости; указанный интеграл представляет полную 

энергию системы; в ньютоновском случае малых скоростей и гравитационного потенциала 

имеем интеграл энергии вида  

( ) constchh
r

=−==− 222 1
~2

v
µ

,          (6) 

где v – трехмерная скорость, µ – гравитационная постоянная массивного тела. 

 Указанный аналог интеграла (5) имеем из (1) 

constHx
r

f
a

==






 − 01 &
α

,           (7) 

H  будем считать полной энергией звезды 2 вместе с аккреционным диском и учитывающим 

через 55γ  возмущение от звезды 1. Поэтому ýôVH =  можно принять за "эффективную 

потенциальную энергию" (функцию Лагранжа-Дирихле) как инструмент для анализа 

допустимых областей движения.  

 Итак, запишем (1) в виде ( 0=r& , 0=φ& ) 

( ) ( )25
55

2
1

220 111 xf
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Отсюда следуют интегралы вида  
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Подставляя (9)-(11) в (8), получим выражение для 
2H  
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Положим, в соответствии с [3] 

r

α
β −= 1 , β

α
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r
.             (13) 
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Определим теперь экстремальное значение момента количества движения эl : 

0

2
ýô =
∂

∂

β

V
, 

( )[ ]
( ) ( )( )[ ]βββ

βαβ
−+−−−

−−
=

−−−

11221

122
52

ý
ba

hbaaf
l

bab

.      (15) 

 Пренебрегая величиной 1<<
r

bα
 примем 1→−bβ ; положим выражение в числителе 

(15) равным единице ( ) 12
5 =−− hbaaf , 

ba

af
h

−
−

=
12

5 ,           (16) 

что соответствует выражению для момента эl  (15) в метрике Шварцшильда при 1→a , 

0→b :     
( )( )131

2
2
ýø

−−
=

ββ
α

l , kfh =−→ 12
5 .         (17) 

Таким образом, мы дали интерпретацию константы 5h  как величины, связанной с 

конформным параметром ( )55
2 γBf . Итак,  

( )( )21

12
2
ý

1 µβµβ
βα

+−
=

−a
l ,            (18) 

где ab 211 ++=µ , ( )ba +−−= 122µ . Имеем  

ab

ba

21

12
1

++
+−

≥≥ β ,             (19) 

в случае (17) 
3

1
1 ≥≥ β ; таким образом, между α=r  и α

2

21 ba
r

++
=  вообще нет 

действительных круговых орбит. Подставляя (18) в (14), получим   
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11
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2
ýô ,   

или   

( )( )( ) ( )( )[ ]
21

212
ýô

112

µβµ
ββµβµ

+
−−++−−

=
abafba

V .     (20) 

Отсюда видно, что на радиусе, равном 
21

1

µµ
αµ
+

=r  эффективная энергия равна ∞ ; 

пробная частица должна на этой орбите двигаться со скоростью света; для решения 

Шварцшильда это будет 
2

3α
=r       ( 31 =µ , 12 −=µ ).          (21) 

Величина f  в (20) должна удовлетворять согласно (16) условию 
ïð

1

a
f > ,     (22) 

где в соответствии с (3) 
3

2
ïð −=b , 

3

1
ïð =a  







 ≤
3

42b . 

 Для указанного классического решения при 1→a , 0→b  из (20) следует, что между 

сферами с 
2

3α
=r  и α2=r  энергия круговых орбит больше, чем энергия на бесконечности, 

и поэтому эти орбиты неустойчивы. После определения b  (см. (1)) по заданному 55γ  

следует аналогичный анализ для общего случая (20).  

 Экстремальное значение для 
2

эфV  получим из (20)  
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=β ,        (23) 

который определяет устойчивую орбиту, где 4111 nnaw += µ ,  

5312212 nnnanaw +++= µµ , 223 naw µ= , ( )( ) ( )bafban −−−−= 1211 µ , 

( )( ) ( )bafban −−−−= 1222 µ , ( )( ) ( )bafban −−−−= 13 12 µ ,    

( )( ) ( )bafban −−−−= 1214 µ , ( )( ) ( )bafban −+−−= 1225 µ .    

Тогда  
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( ) ( )( )[ ]ýýý
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11221 βββ

αβ
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=
ba

l .        (25) 

Для случая 1=a , 0=b , 1=f  устойчивая орбита реализуется при 32ý =β , α3=r , 

98minýô =V . Отсюда для ОТО следует, что при minýôýô1 VV >≥  существуют две 

круговые орбиты с разными l , но с одинаковыми ýôV ; одна из них - вне сферы с α3=r  – 

устойчивая, а другая, внутри сферы с α3=r  – неустойчивая.  

 

2. Определение возмущающего поля 55γ  

Нами рассматривается движение пробной частицы в поле двух тел - бинарной системы, 

состоящей из двух звезд, внешние оболочки которых взаимодействуют между собой, т.е. 

массы обоих звезд меняются. Именно для такой задачи рассматривается задача трех тел - 

пробная частица и две звезды. При этом основное внимание уделяется звезде с более 

мощным гравитационным потенциалом - нейтронной звезде, черной дыре. В этом случае 

вторая компонента является возмущением для пробной частицы и черной дыры; целью 

является определение этого возмущения. 

 Вся классическая и релятивистская небесная механика посвящена проблеме 3-х и более 

тел. В этом случае допускается пертурбационная функция 
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µ ,    (26) 

где ∆ – взаимное расстояние между звездами, rr ′rr
, – их радиусы - векторы, µ ′– 

гравитационная постоянная звезды. Проблема решается разложением R
~

 в ряд, используя 

задачу двух тел с последующим интегрированием уравнений Лагранжа для оскулирующих 

элементов [5]. 

 Нами предлагается более простое получение возмущения методом, предложенным М.Ф. 

Широковым [6]; затем, в метрике пятимерного пространства (5D) метрическую компоненту 

55γ  при избыточном измерении 
5x  соотносим с возмущением полной энергии из теории 

М.Ф. Широкова. При этом используем естественно возникающий в теории Калуцы-Вессона 

(5D) индуцированный тензор энергии-импульса для получения закона изменения массы 

возмущающей звезды ( )0x∗α  за счет перетекания массы к аккреционному диску черной 

дыры. Полагаем при этом бинарную систему консервативной., т.е. равенство расхода масс 

между компонентами  
ds

d

ds

d αα
−=

∗
,              (27) 

где ( )0x∗α  – гравитационный радиус возмущающей звезды, ( )0xα – гравитационный радиус 

черной дыры. При этом в выбранной бинарной системе пренебрегается унос массы-энергии 
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из лагранжевой точки 2L  [2]. Таким образом, пятимерная метрика черной дыры 

представляет собой консервативную систему, позволяющую аналитически решить 

поставленную задачу. Параметры орбиты пробной частицы зависят от времени и 

представляют аналог оскулирующих элементов в небесной механике.  

 Итак, рассмотрим в общем виде внешнее поле возмущающей звезды, зависящей от 

гравитационного и электромагнитного потенциалов; таким может быть решение уравнений 

Эйнштейна-Максвелла (метрика Эрнста [7]) имеющего вид (4D) 

( ) ,
2

 

1

1
2

22
0

2

2
2

2

2
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2

22

2

2
22

Λ
−

Λ

′
+

+−

Λ
−













Λ

′
−









+−Λ=

∗

∗ φ
φ

ω

α

ωα dr
dxd

r
dr

r

Q

r

dx
r

r

Q

r
ds  (28) 

( ) constQrrQrBrQBQrBQrB ++−−++−=′ ∗−−− 2213
0

133
0

3
0

1
0

2

1

2

1
2 αω ,

4
1

22
02 rB

+=Λ (29) 

Здесь 0B , Q – параметры, пропорциональные магнитному и электрическому зарядам; видно, 

что при наличии магнитного поля решение – стационарное. Запишем для (28) функцию 

Лагранжа для случая орбитального движения пробной частицы ( )0=r&   

( ) 2
33

0
03

20
00 21 φφ &&&& gxgxgL ++=≡ ,         (30) 

где 












Λ

′
−









+−Λ=

2

22

2

2
2

00 1
ωα r

r

Q

r
g , 

2

2

03
Λ

′
=

ωr
g , 

2

2

2

33

1
r

Q

r

g

+−

Λ
−=

α
. 

Тогда для случая  0≡
∂
∂
r

L

&
 следует выражение ( ) 02 2

1,33
0

1,03

20
1,00 =++=

∂
∂

φφ &&&& gxgxg
r

L
, (31) 

((,1) означает производную по r ).  

 Решая совместно (30) и (31), получим выражения для 0x&  и φ&  как функции от r  

( ) ( ){
( ) },23

2

1,001,33
2

1,03331,031,330333
2

1,03

1,331,00331,0303
2

1,3300
2

1,33

2

1
0

ggggggggg

ggggggggx

−−++

++−=&
               (32) 

( ) ( ){
( ) },23

2

1,001,33
2

1,03331,031,330333
2

1,03

1,331,00331,0303
2

1,3300
2

1,33

2

2
0

ggggggggg

ggggggggx

−−−+

++−=&
    (33) 

0
1

1,33

1,001,33
2

1,031,03

1 x
g

gggg
&& ⋅






 −−−

=φ , (34)  
0
2

1,33

1,001,33
2

1,031,03

2 x
g

gggg
&& ⋅






 −+−

=φ .(35) 

 Полученные результаты входят в коэффициенты в эффекте Широкова. Полагая 

возмущения 
iξ  пробной частицы равными 

00
0

0 xx −=ξ , rr −=ξ 0
1

, φ−φ=ξ 0
3

, 

запишем согласно [1] уравнения возмущенного движения в виде  

02
,2

2

=Γ+Γ+ klji
kjl

k
ji

jk

i

UU
ds

d
U

ds

d
ξ

ξξ
,       (36) 

(символы Кристоффеля 
i
jkΓ  приведены в Приложении), 

jU – 4-х скорости.  

 Имеем согласно (36) систему дифференциальных уравнений второго порядка с 

постоянными коэффициентами 
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01
3

0

2

3

12

12

=+++ ξ
ξξξ

a
ds

d
a

ds

d
a

ds

d
,        (37) 

0
1

2

32

=+
ds

d
b

ds

d ξξ
,  (38)     0

1

2

02

=+
ds

d
C

ds

d ξξ
, (39) 

где         φ&&
1
33

01
031 2Γ+Γ= xa , ( )φ&&

1
30

01
002 2 Γ+Γ= xa ,       (40) 

( ) φφ &&&&
01

1,03
1

1,33

201
1,003 2 xxa Γ+Γ+Γ= ,        (41) 

( )φ&&
3
31

03
012 Γ+Γ= xb , (42)    ( )φ&&

0
31

00
012 Γ+Γ= xC . (43) 

Здесь принято constRr == ; значения 
0x& , φ&  см.  в (32)-(35). Полагая  

sie ωξ=ξ 0
1

1
, 

sie ωξξ 0
0

0 = , 
sie ωξ=ξ 3

0
3

,       (44) 

получаем из (37)-(39) условие нетривиальной совместимости однородной системы линейных 

уравнений  

0

0

0
2

2

21
2

3

=

−

−

−

ωω
ωω

ωωω

iC

ib

iaiaa

,          (45) 

откуда получим   ( ) 02
132

4 =++− ωω baaCa ;           (46) 

отличное от нуля решение есть baCaa 123
2 −−=ω ,          (47) 

что формально совпадает с решением Широкова для поля Шварцшильда; в данном случае 

параметры 1a , 2a , 3a , C , b  зависят еще от электромагнитного поля; выражение для (47) 

приведено в Приложении.  

 Возмущенная функция в данном случае получается из решения для 
0
0ξ  

s
C

ωξ
ω

ξ cos0
1

0
0 = , (48) ( ) sC

ds

d
ωξ

ξ
γ sin0

1

0
0

55 =













= , (49) ( ) sC ωξ sin0

1=Φ .  

 Рассмотрим теперь подробнее выражение для 55γ  (49). Очевидно, что при значениях 

π=ω ks , ...2,1,0 ±±=k  отсутствует возмущение полной энергии, значит, при этих 

значениях sω  метрика - четырехмерная, для которой решается лишь задачи 2-х тел [5].  

 Вернемся к исходной метрике (1), где sC
r

b

ωξγ
α

sin1 0
155 ==







 − . 

Очевидно,     








 −
=








 −
=

r

sC

r

b
α
ωξ

α
γ

1ln

sinln

1ln

ln
0

155
, ( )0xαα = ,      (50) 

где ctx =0
, t – время в лабораторной системе; в общем случае полагаем, что ( )0xCC= , 

( )0xωω = . Для метрики Шварцшильда имеем 0=b , следовательно, из (50) следует, что 

( ) ( ) 10sin0 00
1

0 === sxxC ωξ  и постоянная 
0
1ξ  выбирается в виде  

( ) ( )sC 0sin0

10
1 ω
ξ = . 

Подставляя это выражение в (50), получим  
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( ) ( )








 −

⋅
=

r

s

sx

C

xC

b
α

ω
ω

1ln

sin

sin
ln

00

.           (50') 

Из (3) для постоянной b  имеем ограничение вида 
3
42 ≤b . Оценки для a  и b  показывают, 

что по мере продвижения константы b  к нулю (уменьшению возмущения от звезды 1) 

устойчивая орбита приближается к классической α3min =r  ( )32min =β ; покажем это. 

Пусть 55γ  удовлетворяет значениям 32ïð −== bb , 31ïð =a , 301.0−=b , 

0029.1=a ; имеем для 8.1=f  ( 02
5 >h ) следующие таблицы: 

                                                                                                    Таблица 1. 

31=a  

β  0.9 0.7 2/3 0.5 0.4 

эфV  2.03 1.88 1.86 1.72 1.73 

Откуда видно, что                   minβ ∼0.5, minr ∼ α2 .  

                                                                                                   Таблица 2. 

0029.1=a  

β  0.9 0.7 2/3 0.5 0.4 

эфV  1.55 1.43 1.33 1.35 1.5 

32min →β , α3min →r . 

 Итак, согласно влиянию третьего тела (звезды 2) возможно расширение областей 

устойчивости движения. Выражению (49) соответствует индуцированный тензор энергии – 

импульса 

( ) ΦΦΓ−Φ= σ
σ
αββα

µαµ
β π

.
8

1
gT , 55γ=Φ      (51) 

ρ
β

µ
ρβ

µ
ρ

ρ
ββ

µ
ββ

µ
ββ TTTT Γ+Γ−== ,, 0 .       (52) 

Для случая ( )0x∗∗ =αα  для поля (28) получим из (51), (52) выражения 

consthT t ==3
0 , (53) 

0
01550,55 2 Γ= γγ ,      (54) 

( )






 Γ+Γ+Γ−= 55

20
010,55

0
0155

0
0,0103

55
22

16
γγγ

πγ

g
ht .    (55) 

Значение 
0
01Γ  см. в Приложении.  

Из (55) имеем дифференциальное уравнение первого порядка для определения 

( )0x∗∗ =αα  

( ) ( )Rab
dx

d
231~~

0

∗∗
∗

++≅ αξα
α

,         (56) 

( )
( ) abRabRa

a

abRba
xx

~~
2

3
~~

2

3

~

~
ln

~~
2

3
~~

1 0

0
2

0
0

0
∗∗

∗

∗
−+

+

+








−≅−

αα

ξα

ξαξ
,   (57) 

где  
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2

1~
3
0QRB

R
a += , 

00

3

2

16~

QB

Rh
b tπ−= , 

23
00

22
02

2

2
2

QRBQBRB
R

Q
+−+−=ξ . (58) 

Здесь R – расстояние пробной частицы от возмущающего тела (звезды). Для примера 

приведем данные по взаимодействующей системе "Лебедь X-1" [2] – это пара, состоящая из 

звезды с массой ⊕= MM 200 , ⊕M – масса Солнца с гравитационным радиусом 

60=α∗ км, радиусом 
6109.1 ⋅ км и черной дырой с массой ⊕= MM 6

o
 и гравитационным 

радиусом 18=α км, удаленным от звезды примерно на ∼47 млн. километров. Учитывая эти 

параметры, из (56) можно приближенно получить линейный закон изменения массы звезды 

от времени в лабораторной системе отсчета 
∗∗ += 0

0 αα Ax , 0<A .       (59) 

Принимая равенство расходов массы–энергии указанной пары, получим  
∗−−= 0

0
0 ασσ Ax .            (60) 

Тогда интеграл энергии, получаемого из (1), будет зависеть от времени 
0x ; первые два 

интеграла получаются сразу - это lconst
L

==
∂
∂
θ&

 – интеграл момента количества движения  

l
r

fr
ba

=






 −
−−

θ
σ &

1
2 1 ,           (61) 

интеграл для пятой координаты  5
5

55 hxf =γ & .            (62) 

 Поскольку ( )0xσσ = , дифференциальное уравнение для 
0x&  имеет вид  

( ) ( ) ( ) 0112
25

0,55
20

1
0

0

=++






 −+









−

−

xffrAx
rr

afA
x

r

x
f

aa

&&&&& γθ
σσ

, (63) 

или, учитывая малость rα , и интегралы (61), (62), имеем  

( ) ( ) ( ) ( )
01

3
11

2

0

2
55

0,55
0

3

220
0

0 =









−+










++










++

r

x

fr

x

r

aAl
x

r

x

r

A
x

a
σ

γ

γσσ
&&& . (64) 

Полагая yx =0
, ( )syx ′=0

& , ( ) ( )syyp ′= , получим уравнение типа Бернулли для 

фиксированного значения φ=rr : ( ) ( ) 1−−=+ pyQpyP
dy

dp
,    

где       ( ) ( )








+=

φφ

σ
r

y

r

A
yP 1

2
, 

( )
( )

( )








−+








+=

φφφ

σ

γ

γσ
r

y

fy

h

r

y

r

Al
Q

y
1

3
1

2 2
55

2
5,55

3

2

. 

 Далее, обозначая ( )202 xpz &== , получим искомое решение в виде  

( ) Ψ+= ∫ 20
~

2
0

xeh
dxP

& , ( ) Wx =
20

& ,        (65) 

где PP 2
~
= , 2

~
QQ −= , 

0
~ 0~

dxeQ
dxP∫∫=Ψ , откуда видно, что интеграл энергии зависит 

явно от времени 
0x . 

 В случае движения, отличного от кругового, из (1) при 0=φ&  и (9)÷(11) следует 

уравнение траектории ( )r1=ρ : 

( )32
2

1
3

2

aaa
d

d
++−=







 ρρρσ
θ
ρ

;        (66) 
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где   σ11 −=a ,  (67) ( ) ( ) ( )[ ]abfWbfbah
l

a −−+−−−−= 2222
1 22

522 ,  (68) 

( )fhWf
l

a −−= 2
5

2

23
1

σ
.           (69) 

С учетом свойств корней правой части уравнения (66), получим  

( ) ( )212113
1

ρρ
σ

ρρρ +−=+−−= a .        (70) 

 Согласно методу Чандрасекхара и Брумберга [5], представим правую часть (66) в виде 

(для примера рассмотрим гиперболу) 

( ) ( ) ( ) 










−

−
−








−

−







+

−=






 ρ
αα

ρ
αα

ρσ
θ
ρ

1~

21

1~
1

1~
1

2

2

e

e

eed

d
;  (71) 

Раскрывая (48) и сравнивая с (45) получим  

( )( )
( ) ( )

2

222

2

222

2
23

1~

~21

1~

41~2







=












−

−−
+

−

−−−
−−

θ
ρ

α

ασ
ρ

α

σσα
ρρσ

d

d

e

e

e

e
. (72) 

Сравнивая (72) и (66), получим уравнения для определения e , α~  через интегралы движения, 

зависящие от времени 
0x .  

Решение (71) ищем в виде   ( )1~

cos11
2 −

+
==

e

Ve

r α
ρ .         (73) 

 

3. Эффект М.Ф.Широкова для решения Керра 
 В случае вращения возмущающего тела (звезды) скалярное поле передает возмущения 

вращательного момента аккреционноиу диску черной дыры; рассмотрим для простоты 

случай отсутствия электромагнитного поля у исследуемой звезды 1. Метрика Керра на 

экваториальной орбите ( 0=r& )запишется в виде [8] 

( ) 02

2

2224202 2
1 dxd

r

a
d

r

raarr
dx

r
ds φ

α
φ

αα
+

++
−







 −= ,  (74) 

где a – величина, пропорциональная w~ – угловой скорости на экваторе 

cM
wIa
~2−= ,              (75) 

I – момент инерции звезды, M – ее масса, c– скорость света, 
2

2

c

µ
α = – гравитационный 

радиус планеты, µ – ее гравитационная постоянная; φ– угол поворота спутника на экваторе; 

выражения для компонентов гравитационного потенциала метрики (74) приведены в 

Приложении. Разделив (74) на 
2ds , получим функцию Лагранжа   

( ) 1
2

1 02
22320 ≡+

++
−







 −= x
r

a

r

arar
x

r
L &&&& φ

α
φ

αα
.    (76) 

Из решения (76) следуют для импульсов 
0x

L

&∂

∂
 и 

φ&∂
∂L

 интегралы h  и l  

φ
αα &&
r

a
x

r
h +







 −= 01 ,            (77) 
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0
223

x
r

a

r

arar
l && α

φ
α

−
++

= .          (78) 

Записывая уравнения Лагранжа для импульса 
r

L

&∂
∂

 и учитывая, что 0=r& , получим из 

0=
∂
∂
r
L

 соотношение между скоростями 
0x&  и φ& :  

( ) 0
2

2 02
2

220 =−









+− x

r

a

r

a
rx

r
&&&& φ

α
φ

αα
.       (79) 

Решая совместно (79) и (76), получим выражение ( )20x&  через r , a , α : 

( )
( ) ( ) ( )[ ]

( ) 











+

−+++−+
−






 −

=

222

223222

20

2

33
1

1

rarr

AarararaarAra

r

x

α

ααααα
& , (80) 

где 
22222 rarA αα += . 

При отсутствии вращения звезды 0=a  мы имеем результат Широкова [2] для поля 

Шварцшильда  

( )







 −
=

r

x
α

2

3
1

120
& .             (81) 

 Запишем уравнения возмущенного движения пробной частицы [2]  

02 ,2

2

=Γ+Γ+ klji
kjl

k
ji

jk

i

UU
ds

d
U

ds

d
ξ

ξξ
,  3,1,0,,, =lkji .  (82) 

Здесь 
jU – компоненты скорости частицы; вычисляя символы Кристоффеля 

i
jkΓ  на основе 

метрических тензоров jkg , 
jkg  (см. Приложение), получим систему дифференциальных 

уравнений 

01
3

0

2

3

12

12

=+++ ξ
ξξξ

a
ds

d
a

ds

d
a

ds

d
,        (83) 

0
1

2

32

=+
ds

d
b

ds

d ξξ
, (84) 0

1

2

02

=+
ds

d
C

ds

d ξξ
,     (85) 

где 
0ξ – возмущение ctx =0

, 
1ξ – возмущение радиуса r , 

3ξ – возмущение угла φ . 

 Представляя решение системы (83)÷(85) в виде  
sie ωξ=ξ 0

1
1

, 
sie ωξ=ξ 0

0
0

, 
sie ωξ=ξ 3

0
3

,       (86) 

где ω– угловая скорость центра масс спутника, τ=cs , τ– собственное время, 
0
iξ – 

комплексные амплитуды, получим условие нетривиальной совместимости однородной 

системы линейных уравнений  

0

0

0
2

2

21
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откуда следует выражение 

( ) 02
132

4 =++− ωω baaCa .          (88) 

Очевидно, что отличное от нуля решение есть 

baCaa 123
2 −−=ω .            (89) 

Выражения для 3a , 2a , C , 1a , b  даны в Приложении.  

 Для 
0x&  и φ&  используются формулы (79), (80); константы 

3
0ξ  и 

0
0ξ  можно связать с 

1
0ξ  

соотношениями       
21

0
3
0

πξ
ω

ξ ie
r

b
= , (90) 

21
0

0
0

πξ
ω

ξ ie
C

= .     (91) 

Таким образом, получим решения о колебании пробной частицы относительно центра 

инерции 

sωξξ sin1
0

1 = , s
r

b
ωξ

ω
ξ cos1

0
3 = , (92) s

C
ωξ

ω
ξ cos1

0
0 = .   (93) 

 Ньютоновский период обращения спутника есть   
2

3

0
2

2
c

r
T

α
π= .     (94) 

Тогда фактический период за счет гравитационных колебаний равен   
ω
b

TT 0=    (95) 

и будет учитывать вращение a  звезды (Земли) на экваторе. 

 Примем вновь в качестве источника указанного возмущения приток (убыль) 

дополнительной массы; в качестве энергетической меры возмущений примем как прежде, 

производную (93) для (8)  sÑ
ds

d
ωξξ

ξ
γ sin1

0
0

0

55 === & ,       (96) 

где выражения для С  и ω  связаны с параметром вращения и приведены в Приложении; 

закон изменения ( )0xα  определяется аналогично методике гл.2, см. (8)÷(25), (51)÷(52). 

 

4. Заключение 
Наряду с известными параметрами, характеризующими возмущающее тело (звезду 1), 

возможны экспериментально не обнаруженные, но теоретически обоснованные частицы, 

например, магнитный заряд (гравитационный монополь); известно решение ОТО с учетом 

магнитного заряда 
∗
0m  как решение NUT (Newman, Unti, Tamburino) [9] 

( ) ( ) 22221201 θ&&&
∗− +−−== mrrUxUL ,         

( ) ( ) 22221202 θdmrdrUdxUds ∗− +−−= , 
22

2

2

2
1

∗

∗

+

+
−=

mr

mr
U

α
. 

 Согласно нашему подходу, методом М.Ф. Широкова может быть определено 

возмущение полной энергии, включая энергию монополя и его учет в скалярном поле 55γ ; 

тогда с помощью функции Лагранжа-Дирихле можно будет анализировать влияние на 

орбитальную устойчивость магнитного заряда (монополя).  

 В ряде работ [10-11] проведены исследования (задачи 2-х тел) орбитальной устойчивости 

пробной частицы в рамках общей теории относительности (4D); в частности, в работе [11] 

использована глобальная аналитическая аппроксимация метрики внешнего поля 

быстровращающейся нейтронной звезды точным решением уравнений Эйнштейна (4D) в 

пустоте, которое определяется заданием массы звезды 2, ее углового момента и 

квадроупольного распределения масс b
~

. Это решение при 0
~
=b  переходит в метрику 

Керра. Подобные исследования в рамках теории Кленйа-Вессона в 5D в настоящей работе не 
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затронуты. Наш подход с использованием (5D) позволяет решать аналитически задачу 3-х и 

более тел. Действительно, если имеем звездной скопление, то можно положить 

∑
=

γ=γ
n

i
i

1
5555 , где i55γ – возмущение энергии от i – ой звезды (планеты), имеющую свою 

метрику. Легко учесть и сплюснутость возмущающего тела, учитываемая решением М.Ф. 

Широкова [12]. 

 Предложенную модель можно интерпретировать как управляемую систему с переменной 

структурой, определяемой размерностью пространства-времени: при 0=b  или 055 =γ  при 

λπ=ωs , ,...1,0 ±=λ  осуществляется переход к 4-х мерной метрике, решаемой с помощью 

нелинейных уравнений Эйнштейна  
αβαβαβ =− TRgR , и уравнениями девиации, 

решаемыми методом М.Ф. Широкова; при λπ≠ωs , 0≠b  восстанавливается переход к 5-ти 

мерной метрике с условием цилиндричности по пятой координате; тогда  изменение масс 

звездной пары определяется из закона сохранения индуцированного тензора энергии-

импульса, возникающего из вакуумного решения теории Калуцы-Вессона  05 =ABR .  

 Итак, мы в настоящей работе дали физическую интерпретацию задачи об орбитальной 

устойчивости в рамках обобщенной теории гравитации (5D), что является стимулом учета 

при изучении гравитационных волн [13] и для детального математического анализа 

устойчивости указанных физических задач в рамках римановой геометрии, которая возникла 

одновременно с гениальной работой по устойчивости А.М. Ляпунова.  

 

5. Приложение 
Для метрики Керра имеем: 
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On the Possibility of Instant Displacements in the Space-Time 

of General Relativity 

Larissa Borissova and Dmitri Rabounski 
E-mail: heya@aha.ru; rabounski@yahoo.com 

Employing the mathematical apparatus of chronometric invariants (physical observable quantities), this 

study founds a theoretical possibility to displace particles instantly in the space-time of the General Theory 

of Relativity. 

1. The teleportation condition in General Relativity 

As it is known, the basic space-time of the General Theory of Relativity is a four-dimensional 

pseudo-Riemannian space, which is, in general, inhomogeneous, curved, rotating, and deformed. 

There the square of the space-time interval βα
αβ dxdxgds =2 , being expressed in the terms of 

physical observable quantities — chronometric invariants [1, 2], takes the form 

.2222 στ ddcds −=  

Here the quantity 

,
1w

1
22

i

idxv
c

dt
c

d −






 −=τ  

is an interval of physical observable time, ( )00

2 1 gcw −=  is gravitational potential, 
00

0

g

g
cv i

i −=  

is the linear velocity of the space rotation, ki

ik dxdxhd =2σ  is the square of a spatial observable 

interval, kiikik vv
c

gh
2

1
+−=  is the metric observable tensor, ikg   are spatial components of the 

fundamental metric tensor αβg  (space-time indices are Greek 3,2,1,0, =βα , while spatial indices 

— Roman 3,2,1, =ki ). 

Following this way we consider a particle displacing at ds  in the space-time. We write 2ds  

down as follows 

, 
v

1
2

2
222









−=
c

dcds τ  

where ki

ikh vvv2 = , and 
τd

dx i
i =v  is the three-dimensional observable velocity of the particle. So 

ds  is: (1) substantial quantity under c<v ; (2) zero quantity under c=v ; (3) imaginary quantity 

under c>v . 

Particles of non-zero rest-masses 00 ≠m  (substance) can be moved: (1) along real world-

trajectories στ dcd > , having real relativistic masses 
22

0

v1 c

m
m

−
= ; (2) along imaginary world-

trajectories στ dcd < , having imaginary relativistic\linebreak masses 
1v 22

0

−
=

c

im
m  (tachyons). 

World-lines of the both kinds are known as non-isotropic trajectories. 
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Particles of zero rest-masses 00 =m  (massless particles), having non-zeroes relativistic 

masses 0≠m , move along world-trajectories of zero four-dimensional lengths στ dcd =  at the 

light velocity. They are known as isotropic trajectories. To massless particles are related light-like 

particles — quanta of electromagnetic fields (photons). 

A condition under which a particle may realize an instant displacement (teleportation) is as 

equality to zero of the observable time interval 0=τd  so that the teleportation condition is 

,w 2cuv i

i =+  

where 
dt

dx
u

i
i =  is its three-dimensional coordinate velocity. 

2. Teleportation of mass-bearing particles and massless particles 

From here the square of that space-time interval this particle displaces instantly takes the form 

,
w

1 22

2

2

22 ki

ik dxdxgdtc
c

dds +






 −−=−= σ  

where 
22

w
1

c

uv

c

i

i=−  in this case, because of 0=τd . 

Actually being the signature )( −−−+  in the space-time area of a regular observer, the 

signature becomes )( +++−  in that space-time area where particles may be teleported. So the terms 

“time” and “three-dimensional space” change each other in that area. “Time” of teleporting particles 

is “space” of the regular observer, and vice versa “space” of teleporting particles is “time” of the 

regular observer. 

At first, let us consider substantial particles. As it easy to see, instant displacements 

(teleportation) of such particles realize itself along world-trajectories in which 022 ≠−= σdds  is 

true. So the trajectories represented in the terms of observable quantities are pure spatial lines of 

imaginary three-dimensional lengths σd , although being taken in ideal world-coordinates t  and ix  

the trajectories are four-dimensional. In a particular case, where the space is free of rotation ( 0=iv ) 

or its rotation velocity iv  is orthogonal to the particle’s coordinate velocity iu  (so that 

0);cos( == i

ii

i

i uvuvuv ), substantial particles may be teleported if only gravitational collapse 

occurs ( 2w c= ). In this case world-trajectories of teleportation taken in ideal world-coordinates 

become also pure spatial ki

ik dxdxgds =2 . 

Second, massless light-like particles (photons) may be teleported along world-trajectories 

located in a space of the metric 

,0
w

1 22

2

2

22 =+






 −−=−= ki

ik dxdxgdtc
c

dds σ  

because for photons 02 =ds  by definition. So the space of photon teleportation characterizes itself 

by the conditions 02 =ds  and 0222 == τσ dcd . 

The obtained equation is like the “light cone” equation 0222 =− στ ddc  ( 0≠σd , 0≠τd ), 

elements of which are world-trajectories of light-like particles. But, in contrast to the light cone 

equation the obtained equation is built by ideal world-coordinates t  and ix  — no this equation in 

the terms of observable quantities. So teleporting photons move along trajectories which are 
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elements of the world-cone (like the light cone) in that space-time area where substantial particles 

may be teleported (the metric inside that area has been obtained above). 

Considering the photon teleportation cone equation from viewpoint of a regular observer, we 

can see that the spatial observable metric ki

ik dxdxhd =2σ  becomes degenerated 0det == ikhh  in 

the space-time area called that cone. Taking the relationship 00hgg −=  [1, 2] into account, we 

arrive to that the four-dimensional metric βα
αβ dxdxgds =2  degenerates as well 0det == αβgg  

there. The last fact implies that signature conditions defining pseudo-Riemannian spaces are 

broken. So that photon teleportation realizes itself outside the basic space-time of the General 

Theory of Relativity. Such fully degenerated space was considered in [3, 4], it was referred as zero-

space because from viewpoint of a regular observer all spatial intervals and time intervals are 

zeroes there.  

At 0=τd  and 0=σd  observable relativistic mass m  and the frequency ω  become zeroes. 

So from viewpoint of a regular observer all particles located in zero-space (in particular, teleporting 

photons) having zero rest-masses 00 =m  are looking of zero relativistic masses 0=m  and the 

frequencies 0=ω . Therefore particles of such kind may be assumed the ultimate case of massless 

light-like particles. 

We will refer to all particles located in zero-space as zero-particles. 

In the frames of the particle-wave concept each particle is given by its own wave world-vector 

αα
ψ
x

K
∂
∂

= , where ψ  is the wave phase (eikonal). Eikonal equation 0=α
αKK  [5], setting forth that 

the length of the wave vector remains unchanged
∗
, for regular massless light-like particles (regular 

photons) becomes travelling wave equation 
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that may be obtained after taking 0=
∂
∂

∂
∂
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αβα

α
ψψ
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gKK  in the terms of physical observable 

quantities [1, 2], where we formulate regular derivatives through chronometrically invariant 

(physical observable) derivatives 
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Eikonal equation in zero-space takes the form 

,0=
∂
∂

∂
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ki

ik

xx
h

ψψ
 

because of there is 0=
∂
∂

=
∗

t

ψ
ω  putting the equation time term into zero. It is standing wave 

equation. So, from viewpoint of a regular observer, in the frames of the particle-wave concept all 

particles located in zero-space are looking standing light-like waves, so that all zero-space is 

                                                 
∗
 According to Levi-Civita’s rule, in a Riemannian space of n dimensions the length of any n-dimensional vector 

remains unchanged in its parallel transfer. So it is true for the four-dimensional wave vector in a four-dimensional 

pseudo-Riemannian space — the basic space-time of the General Theory of Relativity. As it is well-known, because all 

isotropic trajectories have zero four-dimensional length, the length of any isotropic vector is zero, of the wave vector 

included. 
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looking filled with a system of light-like standing waves — a light-like hologram. This implies that 

an experiment discovering non-quantum teleportation of photons should be linked to stop of light. 

There is no problem that photon teleportation realizes itself along fully degenerated world-

trajectories ( 0=g ) outside the basic pseudo-Riemannian space ( 0<g ), while teleportation 

trajectories of substantial particles are strictly non-degenerated ( 0<g ) so the trajectories are 

located in the pseudo-Riemannian space
∗
. It is no problem, because in any point of the pseudo-

Riemannian space we can place a tangential space of 0≤g  consisting of the regular pseudo-

Riemannian space ( 0<g ) and zero-space ( 0=g ) as two different areas of the same manifold. 

Such space of 0≤g  will be a natural generalization of the basic space-time of the General Theory 

of Relativity, permitting teleportation of both substantial particles (outside experiment yet) and 

photons that has been realized in experiments. 

The only difference is that from viewpoint of a regular observer the square of any parallel 

transferred vector remains unchanged. It is an “observable truth” for also vectors in zero-space, 

because the observer reasons standards of his pseudo-Riemannian space anyway. So that eikonal 

equation in zero-space, expressed in his observable world-coordinates, is 0=α
αKK . But being 

taken in ideal world-coordinates t  and ix  the metric inside zero-space 

,0
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1 22
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 −−= ki

ik dxdxgdtc
c

ds  degenerates into a three-dimensional 2µd  which, depending 

on gravitational potential w  uncompensated by something other, is not invariant 

inv
w

1 22

2

2
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 −== dtc
c

dxdxgd ki

ikµ . As a result, within zero-space the square of a transferred 

vector, a four-dimensional coordinate velocity vector αU  for instance, being degenerated into a 

three-dimensional iU , does not remain unchanged 

,const
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1 2

2
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 −== c
c

UUgUU ki

ik

k

i  

so that looking Riemannian geometry for a regular observer, the real geometry of zero-space within 

the space itself is non-Riemannian one. 

3. Conclusions 

Finishing this brief study, we conclude that instant displacements of particles are naturally 

permitted in the space-time of the General Theory of Relativity. As it was shown, teleportation of 

substantial particles and photons realizes itself in different space-time areas. But it would be a 

mistake to think that teleportation requires to accelerate a substantial particle to super-light speeds 

(the tachyons area), while a photon needs to be accelerated to infinite speed. No — as it is easy to 

see from the teleportation condition 2w cuv i

i =+ , if gravitational potential is essential and the 

space rotates at a speed close to the light velocity, substantial particles may be teleported at regular 

sub-light speeds. Photons can reach the teleportation condition easier, because they move at the 

light velocity. From viewpoint of a regular observer, as soon as the teleportation condition realize 

itself in the neighbourhood around a moving particle, such particle “disappears” although it 

continues its motion at a sub-light coordinate velocity iu  (or at the velocity of light) in another 

                                                 
∗
 Any space of Riemannian geometry has the strictly non-degenerated metric by definition of such metric spaces. 

Pseudo-Riemannian spaces are a particular case of Riemannian spaces, where the metric is sign-alternating. So a four-

dimensional pseudo-Riemannian space Einstein put the base of the General Theory of Relativity is as well of strictly 

non-degenerated metric. 
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space-time area invisible for us. Then, having its velocity lowered or something other that breaks 

the teleportation condition (lowering gravitational potential or the space rotation speed), it 

“appears” in the same observable moment in another point of our observable space at that distance 

and the direction which it has got at iu  there. 

In connection with the results, it would be good to remember the “Infinity Relativity 

Principle”, introduced by Abraham Zelmanov (1913–1987), a prominent cosmologist. Having his 

cosmological studies [1] a base, he had arrived to that “…in homogeneous isotropic cosmological 

models spatial infinity of the Universe depends on our choice of that reference frame from which 

we observe the Universe (the observer’s reference frame). If the three-dimensional space of the 

Universe, being observed in one reference frame, is infinite, it may be finite in another reference 

frame. The same is as well true for the time during which the Universe evolves.” 

We have arrived to the “finiteness relativity” here. As it was shown, because of a difference 

between physical observable world-coordinates and ideal ones, the same space-time areas may be 

very different, being defined in each of the frames. So that, being taken in observable world-

coordinates zero-space is a point ( 0=τd , 0=σd ), while 0=τd  and 0=σd  taken in ideal world-

coordinates become 0
w

1 22

2

2
=+







 −− ki

ik dxdxgdtc
c

 that is a four-dimensional cone equation like 

the light cone. Actually here is the “finiteness relativity” for observed objects — an observed point 

is the whole space taken in ideal coordinates. 

This article has been read in the conference “Today’s Take on Einstein’s Relativity”, Pima 

College (Tucson, Arizona), Feb 18, 2005. 
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The architecture of triatomic and polyatomic molecules  
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We have previously shown that the classical vibrational period T0 of a diatomic molecule can generally be 

expressed in terms of its nuclei reduced mass M0 and its internuclear distance r0, as 

;rmg
nnh

4π
T 2

0e0

ji

2

0 M=
   

ni and nj, are the respective principal quantum numbers of the electrons making up the bond; me is the 

electron mass; h is the Planck Constant; we call g the “bond looseness factor” of the molecule; it is a 

Lorentz invariant constant.  

g depends only on the electronic properties of the molecule of concern; thus it is expected to remain the 

same for chemically alike molecules. This makes that T0 versus 2

00ji r)nn(1/ M  for such molecules, should 

exhibit a linear behavior, the slope of which, i.e. 
e

2 gm)h/4( π  fixes g. 

For electronic states configured similarly, previously we have determined 
21nn  to be 

000/rr , where 
0r  is the 

internuclear distance of the molecule in hand, and 
00r  the internuclear distance of the molecule of the 

chemical family we visualize, bearing the lowest classical vibrational period, thus the shortest internuclear 

distance. 

A triatomic molecule possesses two bonds. One can anticipate that both of the bonds practically act like a 

diatomic molecule’s bond, made of just one atom on the one hand, and the rest of the molecule on the other 

hand. We thus expect the above relationship, to hold separately for the bonds of a triatomic molecule, and 

even a polyatomic molecule.  

Accordingly, out of the available data, we compose four chemically alike families of triatomic or polyatomic 

molecules, and we draw T0, related to the bond in consideration, versus 2

00ji r)nn(1/ M , for each of these; 

here M0  for a triatomic molecule, is the reduced mass of on the one hand, the “mass of the nucleus of the 

atom” and, on the other hand, the “total mass of the remaining nuclei of the molecule”, bound by the bond 

of concern; r0, is the length of the bond; ni and nj, are again the respective principle quantum numbers of the 

electrons making up the bond.  

The plots T0, versus 2

00ji r)nn(1/ M  indeed satisfactorily turn out to be straight lines, passing by the origin, as 

expected. 

We found nothing in the literature, similar to the line we pursue herein. 

 

1. Introduction 
In our previous work we established that the classical vibrational period T0 of a diatomic molecule 

can be expressed by the comprehensive relationship  

       
2

0e0

ji

2

0 rmg
nnh

4π
T M=   ;                                                                                   (1)    

 
here, M0 is the nuclei reduced mass of the diatomic molecule in hand, r0 its internuclear distance, me 

the electron mass, g a Lorentz invariant coefficient which we called the “bond looseness factor” 

(given that the inverse of it is roughly proportional to the dissociation energy of the molecule), h the 

Planck Constant, and ni and nj are the respective principal quantum numbers of the electrons, 

making up the bond. 

g depends only on the electronic structure of the molecule; thus, it is expected to be a constant for 

diatomic molecules belonging to a given chemical family.  

For electronic states configured similarly, previously we have determined jinn  to be  
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00

0
ji

r

r
nn =  ,           (2) 

where 0r  is the internuclear distance of the molecule in hand, and 00r  the internuclear distance of 

the molecule of the chemical family we visualize, bearing the lowest classical vibrational period, 

thus the shortest internuclear distance. 

Thence, T0 versus 2

0e0ji rm)nn(1/ M  is expected to behave as a straight line, the slope of which is 

e

2 gm)h/4( π , for diatomic molecules belonging to a given chemical family. We checked this very 

satisfactorily, regarding all of the chemical families of diatomic molecules one can compose.
1, 2, 3,4,5

 

We are embarrassed to cite merely our work, but the fact is, we found nothing similar in the 

literature.  

 

2. Approach extended to triatomic molecules 
A triatomic molecule possesses two bonds. One can anticipate that both of the bonds practically act 

like a diatomic molecule bond, made of an atom, on the one hand, and the rest of the molecule, on 

the other hand. 

Henceforth, regarding the triatomic molecules belonging to a given chemical family,   the classical 

period of vibration T0, of either one of the two bonds, is expected to behave as a straight line, versus 
2

0e0ji rm)nn(1/ M , the slope of which is e

2 gm)h/4( π .  

Here though, M0  should be redefined. Thus let us suppose that the triatomic molecule of concern is 

composed of the atoms A1, A2, and A3, of respective mases m1, m2 and m3, so that the molecule can 

be represented as A1 - A2 - A3. The bonds in question may be single, double or triple. 

Thus one should consider two different nuclei reduced mass, one for the bond A1 - A2, and the other 

for the bond A2 - A3. 

Let us write the nuclei reduced mass for the latter bond: 

321

321

0
m)mm(

m)mm(

++

+
=M     (for the bond A2 - A3)  .     (3) 

In this case, r0 is the internuclear distance between the nuclei A2 and A3. Further, the quantum 

numbers ni and nj are again the respective principal quantum numbers of the electrons making up 

the bond, in between A2 and A3. 

Along our approach, we can deal with not only triatomic molecules, but also polyatomic molecules, 

in general. 

 

3. Results 
Out of the available data, we could assemble just four families of chemically alike triatomic, or 

polyatomic molecules.
6
  

These families are shown in Table 1, together with the related “bond looseness factor” [calculated 

out of the slope, as induced by Eq.(1)], and the standard deviation on this.
 7

  

Accordingly, we draw the classical vibration period T0, of the bond of the polyatomic molecule, we 

focus on, versus 2

0e0ji rm)nn(1/ M , in Figures 1, 2, 3 and 4. These, indeed turn out to be nearly 

straight lines.  

Eq.(1) at the same time, can be considered for a given molecule’s excited electronic states, next to 

its ground state. Thus, we should expect the square of the vibrational period 0T , of a given state of 

a given bond in a given polyatomic molecule, to behave proportionally to the cube of the 

internuclear distance r0, to be associated with this bond’s electronic state in consideration; i.e.
5
 

      3

0

2

0 r~T  ,                                                                             (4) 

the proportionality constant being 2

0e0ji

2
rm)nn /(4π M , along the definitions given above.  

This is successfully checked for all of the polyatomic molecules, we reviewed.
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Table 1. The Molecular Bond Strength Factors of the Chemical Families and the Related Relative 

Errors  

 

 

 

 

 

 

 

 

 

 

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

Figure 1 Period of CO
2
 and CS

2
, versus (n

i
n

j
)

-1/2 
M

0

1/2
 r

0

2

S=CS

O=CO

(n
i
n

j
)

-1/2 
M

0

1/2
r
0

2 
 (amu

1/2
 A

2
)

T
0
 (x10

4
c)

c in cm/s

 

 

The Chemical Families 

 

The Bond 

Looseness  

Factor (g) 

-1CO2, CS2 0.07 

NH3, PH3 0.22 

H2O, H2S, H2Se, H2Te 0.16 

F2C, F2Si 0.03 
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A novel approach to the bound muon decay rate retardation: metric 

change nearby the nucleus 
 

Tolga Yarman 
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We show that, just like the gravitational field, the electric field too slows down the internal 
mechanism of a clock, entering into interaction with the field. This approach explains substantially, 
the retardation of the decay of the muon bound to a nucleus. 
 

Introduction 
For a “real” atomistic or molecular wave-like object, i.e. a wave-like object existing in nature, we 
have shown elsewhere1 the following theorem, first, on the basis of the Schrodinger Equation, as 
complex as this may be, then on the basis of the Dirac Equation, whichever may be appropriate, in 
relation to the object in hand. A “real” atomistic and molecular wave-like object, for instance, 
involves a potential energy made of only “Coulomb Potential energies”. Thence even a relativistic 

Dirac description embodying potential energies made of potential energies other than Coulomb 
Potentials energies, may not represent a “real” description, for such an object. 
Theorem 1 : In a “real wave-like description” (thus, not embodying artificial potential energies), 

composed of J particles, if all of the different masses mj0 (j = 1,…, J) of concern, 
are overall multiplied by the arbitrary number γ, then concurrently, a) the total 

energy E0 associated with the given internal motion of the object, is increased as 
much, b) the period of time 0T  associated with the motion in consideration, is 

reduced as much, and c) the size 0R  to be associated with this motion contracts as 

much; in mathematical words this is     

       {(mj0, j = 1,…, J) →  (γmj0, j = 1,…, J)} ⇒ {[ 00 EE γ→ ],  [ 0T
γ

→ 0T
],  [ 0R

γ
0R

→ ]} .     (1)  

What this theorem fundamentally says, is that, if an object ever experiences, for instance an overall 

mass decrease, then its total energy weakens as much, yielding a stretching of the period of its 
internal motion framed by the total energy in question, which should be considered quite 
understandable. 
 Next we define a quantity called the “clock mass” M0; it is a compound mass carrying the 
internal dynamics of the object; it is manufactured based on different masses embodied by the 
object in hand; thus multiplying these masses by γ, alters M0 just as much. 

 Eq.(1) immediately yields the invariance of the quantity 2
000ME R . This is remarkable, since 

this quantity, is as well, Lorentz invariant (were the object brought into a uniform translational 

motion). 

 We further show that, the quantity 2
000ME R  is necessarily “strapped” to the square of the 

Planck Constant, h2 (being proportional to it, through a rather complex, dimensionless, and 

relativistically invariant quantity, which is somewhat a characteristic of the bond structure of the 

wave-like object in hand).
1 

 We call this occurrence, the UMA (Universal Matter Architecture) Cast, disclosing already 
many structural properties, otherwise left obscure since several decades.2,3,4  

 Note that primarily what we do is not a “dimension analysis”;  2
000ME R  would anyway not be 

invariant in regards to a mass change, if the wave-like object in question were not “real”, though of 
course, dimension-wise there would still be no problem.  
 Our finding further holds for nuclear wave-like objects embodying a potential term made of 
“real potentials”.

1  
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 Anyhow it ought to, since as we just pointed out, the quantity 2
000ME R  happens to be Lorentz 

invariant, which makes that the special theory of relativity, stringently imposes an interrelation in 

between 0E , 0M  and 0R  (and this, already at rest), which is precisely the proportionality of 
2

000ME R , to a Lorentz invariant universal constant, i.e. 2h . 

 The mass increase we introduced above, may very well not be all the way arbitrary, and this is 
indeed what one experiences for instance, when a clock is removed out of a gravitational field; its 
rest mass, following our claim, as required by the special theory of relativity,

5 should be increased 
as much as the binding energy the object displays vis-à-vis the host celestial body of concern (just 
like the mass of the hydrogen atom is increased, as the electron is removed away from its orbit 

around the proton). The unit time displayed by the internal dynamics of the object in hand, were 
this a wave-like clock, according to our Theorem 1, should then be altered as much.6 This is exactly 
what happens in the scope of the general theory of relativity.5 
 According to our approach, the same phenomenon would occur, in exactly the same way, for 
ionized wave-like clocks in an electric field, or for wave-like clocks bearing an electric dipole, still 
in an electric field, or for wave-like clocks bearing a magnetic dipole in a magnetic field.7  
 Similarly, if a muon is bound to a proton, its half life should quantum mechanically stretch, as 
much as its binding energy. This happens, to our knowledge, something totally overlooked. 
 

Calculation of the muon disintegration half life 
Keeping temporarily aside the relativistic effect due to (had we assumed so) the motion of the 
bound muon around the nucleus, and assuming that such a muon preserves its original identity 

(besides, its internal dynamics’ frequency weakens); for the bound muon, based on Theorem 1, we 
can write 









−

=

2
0

B

0

cm

E
1

T
T  ;     (2) 

in this relationship 0T  and T represent the decay half lives of respectively the free muon and that of 

the bound muon; EB is the binding energy of the muon to the nucleus of concern.  
 Here 0m , should be the mass of the free muon, supposing that, the negative electric charge of 

the muon is distributed uniformly to its entire mass, and that the muon internal dynamics is altered 
accordingly, when bound to a nucleus.  
 However this may not be true. Indeed what is bound to the positively charged nucleus, should 
most likely be the “muon’s electron”, and not the “muon” as a whole. This muonic electron should 
then pull, the neutrino and the antineutrino, together with itself, to the binding state.  
 Hence, 0m  should be considered as the highly energetic electron’s mass inside the muon. 

 Note that there seems to be six different channels of decay of the muon.8 So the constituents of 
the muon (supposing that these, acquire their identities inside the muon, at least, prior to the 

decay), should really depend on these channels. The one we just considered, is the main decay 
channel. 
 We do not know beforehand how, the energy subtracted from the muon’s electron (through the 

binding process), shall ultimately be accounted by various constituents of the muon. 
 However, if we were allowed to reason based on the decay data regarding the main decay 

channel; the mass of the electron in the free muon, can be guessed to be [0.5 x the mass of the free 
muon].8  
 It should be this electron’s mass alone (and not the muon as a whole), which exhibits a mass 

deficiency through the binding process of the free muon, to the nucleus in consideration. In other 
words, we come to expect that the electron’s mass, inside the bound muon will decrease as much as 
the muon’s binding energy. 
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 One may check this guess by comparing the binding energy of the muon to the nucleus, with the 
measured energy shift of the electron thrown from the bound muon, as referenced to the energy of 

the electron thrown from the free muon.
8 The match is indeed very satisfactory, chiefly for heavy 

nuclei (binding the muon). 
 Thus we can conlude that, basically the weakened dynamics of the electron inside of the muon, 
slows down the disintegration of the muon in accordance with Eq.(2).    
 Now, we can express EB (the binding energy of the muon) for the ground state, based on the 
Bohr-Sommerfeld, or here the same, the general Dirac Model, with the familiar notation; 

2

Zcm
Z

4

1
1

h

eZm2
E

222
02

0
2

2

42
00

2

B

α
≅







 α+
π

≅ µµ ;                                      (3)         

µ0m  is the muon’s rest mass, Z0 the atomic number of the nucleus of the hydrogen-like muoatom, 

binding the muon, e the electron’s charge; α is the fine structure constant; it is supposed that the 

atom is in its ground state.  

Note that Eq.(3) is obtained by expending the rigorous result in power of 22Z α , but the difference 
in question remains negligible for the region 85Z1 <≤ , within which the experimental data is 
collected. 
 The electron’s mass in the free muon can be expressed as [f µ0m c2], f following our claim, 

being 0.5. (Thus 0.5 µ0m  is the effective mass of the electron, responsible of the binding of the 

muon.) α  is  

   
137

1

ch

e2 2

=
π

=α .                                                              (4) 

The denominator γ , of Eq.(2), thus becomes 








 α+α−=−=γ
µ

2
0

22
0

2

2
0

B Z
4

1
1Z

f2

1
1

cfm

E
1  ,  f = 0.5 .     (5) 

 Next, we have to take into account the time dilation due to the rotation of the muon around the 
nucleus (had we presumed so); this is 

             

22

42
0

2

2

2

ch

eZ4
1

1

c

v
1

1

π
−

≅

−

=β   ;                         (6) 

here v the rotational speed of the muon in consideration; it is evaluated through the Bohr-
Sommerfeld approximation, which should be expected to be quite satisfactory for light nuclei; for 
heavy nuclei, quantum effects must be expected to come into play, and it is pointed out that, Eq. (6) 
is generally an approximation.9  
 Anyway, the overall decay half life T of the bound muon, through Eqs. (2), (3), (4) and (5), 
quite satisfactorily, becomes  
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22
0

22
0

2

0

Z1)Z
4

1
1(Z

f2

1
1

T
T

α−




 α+α−
=   .                                 (7) 

               (for the muon bound to the ground state) . 

It is interesting to note that this expression does not depend on the muon’s mass. 
 Thus, if the electron bears any internal mechanism, the above expression would well tell us 
how this mechanism would slow down, when the electron is in a bound state. (f, though in this case, 
should be taken as unity.)  
 

Check against experimental and previous theoretical results 
We were totally uninformed, in regards to preexisting experimental results, and we are more than 
happy to discover that our prediction about the bound muon decay, matches quite well with the 
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experimental results. 8,9 Moreover our prediction at a first strike, appears to be much better than 
previous predictions made so far, no matter how sophisticated, also inevitably cumbersome these 
may be. 
 The predictions in question, handle the retardation of the decay process through i) a 
semiclassical approach, which embodies the “phase space effect” (consisting in the reduction of the 

volume of phase space of the muon decay products, because of the binding), the classical 
“relativistic time dilation effect”, and “the electron Coulomb effect” (consisting in the attraction 

exerted by the binding nucleus, on the muonic electron) , and ii) sophisticated quantum mechanical 
approaches.  
 It would be interesting to compare quickly our prediction (Author) [cf. Eq.(5)], with the 
semiclassical (SC) results, exempt of time dilation effect: 

 2
0

2
SC Z

2

11
1 α−≅γ              (for light Z0),      (8) 

 ( ) 2/52
0

2
SC Z158.0 α−≅γ     (for heavy Z0),      (9) 

 2
0

2
Author Z1 α−≅γ               (for all Z0).                       (10) 

Other predictions are so complicated that, they bear no easy series expansions. 
 In Figure 1 we present the experimental data, and the results of previous calculations (decay 

rate normalized to the decay rate of the free muon, versus the atomic number), achieved to clarify 
these data. Curve A is a semiclassical calculation including the time dilation effect. Curve B is the 
same for a Gaussian muon wave function. Curve C is a semiclassical calculation of the time dilation 
effect alone. Curve D is an interpolation from an anterior calculation achieved by Gilinsky and 
Mathews.10 Curve E is interpolated from the calculations achieved by Huff.9 The experimental 
results are achieved by Yovanovitch, Barrett, Holmstrom, Keufel, Lederman and Weinrich. 11,12,13  

 In Figure 2 we present our prediction, as the denominator of the RHS of Eq.(7), versus the 
atomic number, together with the corresponding data in hand. We also sketch separately, γ  of Eq. 

(5), versus the atomic number, since this constitutes the basis of our claim.  
 The match of our prediction with data, indeed seems successful. 
 Analyzing the validity of various proposed contributions, up against that we developed herein, 
though, constitutes the topic of a subsequent article. 
 

Conclusion 
On the whole, clearly our prediction’s match with data, is much better than that of other predictions, 
and constitutes a fundamental explanation to bound muon decay rate retardation.  
 Our approach however embodies a totally different philosophy than that of others. It is 
surprizingly simple, whereas other predictions are quite complex.  
 It is also amazing to note that we came to predict the retardation of the decay of bound muons, 
through our Theorem 1, which as well yields the end results of the general theory of relativity (and 

this, without having to assume the authentic “principle of equivalence”).
6,7 

 

 Thus excitingly enough we come to state that just like “mass”, “electric charge” too, slows 
down clocks, interacting with the electric field in question. 
 This fact induces the metric change nearby a nucleus, just like the metric change nearby a 

gravitational source. 

 Note that the data embody a peak near iron. Our approach did not predict it. Yet neither could 
the previous attempts. It is suspected that this may be due to the large background of low energy 

gamma rays associated with accompanying inelastic muon capture events. 
 It is worth to emphasize the following interesting piece of information. It is that the bound 
muon’s mass is reduced (as much as the muon’s binding energy), as compared to the free muon’s 
mass. The mass-energy equivalence drawn by the special theory of relativity, or the same, the 
energy conservation law in the broader sense, indeed imposes such an occurrence [cf. Eq.(2)]. 
 This means that just likewise, the bound electron’s mass should be smaller than the free 
electron’s mass, and this as much as binding energy, coming into play. 
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 This seems quite trivial, but very much against the general wisdom, since neither Dirac nor 
anyone else after him, dared to alter the mass of the bound electron. Taking it into account, 
strikingly induces the change of the metric nearby the nucleus.

14 
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General relativity with vacuum corrections 
 

A. S. Rabinowitch 
Department of Applied Mathematics and Informatics 

Moscow State Academy of Instrument-Making and Informatics 

Moscow, 107996  Russia 

 
A new conformal-invariant generalization of the Einstein gravitational theory is proposed which contains a 

vacuum vectorial field of the Weyl type. Differential equations of the second order for the vacuum field 

potentials are found and vacuum corrections to the classical dynamic equations for dust-like matter are 

determined. Cosmological applications of the proposed gravitational theory are considered. 

 

1. Introduction 
In recent years a number of difficult problems facing the modern cosmology have arisen. 
 These problems are caused by observational data obtained from the space telescope “Hubble’ 

and to resolve them cosmologists apply various generalizations of the Einstein gravitational theory 

containing additional scalar fields and cosmological terms. 

 For this purpose in our work [1] a new attempt to generalize the Einstein theory based on an 

additional vectorial field and Weyl’s geometry was undertaken. This generalization of the Einstein 

equations containing four Weyl’s potentials iλ  and Weyl’s connection i

jkΓ  has the form 

4

1 1
2 2

(16 / ) ,

,    ,

( ) ( ),

ik ki ik ik

l l l m m l ik

ik l ik k il ik lm il km ik

i im i i i

jk j mk k jm m jk jk j k k j

R R g R f c T

R R g R

g g g g g

π

λ λ δ λ δ

+ − =

= ∂ Γ − ∂ Γ +Γ Γ −Γ Γ =

Γ = ∂ + ∂ − ∂ + − −

    (1) 

where f  is the gravitational constant, ikg  is the metric tensor, ikR  is the Ricci tensor, ikT  is the 

energy-momentum tensor of matter and i

kδ  is the Kroneker symbol. 

 Weyl’s connection and hence the gravitational field equations (1) are invariant under the gauge 

transformations 

exp( ) ,    ,ik ik i i ig gφ λ λ φ→ → +∂           (2) 

where φ  is an arbitrary differentiable function. This property of Weyl’s geometry allows one to 

give the following simple definition to the four-dimensional interval 1/ 2( )i k

ikds g dx dx=  which, in 

contrast with the Einstein theory, does not rest on the principle of least action. According to Weyl’s  

idea, 2ds  is defined as a quadratic differential form describing the kinematics 2 0i k

ikds g dx dx= =  

of beams of light in a gravitational field [2]. Such a definition just requires that a gravitational 

theory should be invariant under the conformal transformation (2) of the metric ikg  , since it does 

not change the kinematic equation for beams of light. 

 As is known, Weyl interpreted the components iλ  as electromagnetic potentials with the aim to 

unify the gravitational and electromagnetic theories. In order to realize this aim, he relied on a 

gauge-invariant Lagrangian of second order in the curvature. However, this way led to serious 

difficulties and, in particular, to gravitational equations of fourth order in the derivatives of the 

metric [2], in contrast with the Einstein equations of the second order. 

 That is why we give another interpretation  of Weyl’s potentials iλ . Namely, let us regard them 

as small quantities characterizing a state of the physical vacuum. Then the proposed gravitational 

equations (1) contain only small corrections to the Einstein equations describing the influence of the 

vacuum potentials iλ  on physical processes. As will be seen later on, when the standard gauge for 

the metric is chosen, the small vacuum potentials have the order of  1/ A , where A  is the radius of 

the Universe. 



251 

 In section 2 we will give main formulae of Weyl’s geometry and apply them to find a 

generalized differential correlation for the energy-momentum tensor ikT  in the presence of the 

vacuum potentials iλ . 

 In section 3 we will obtain generalized kinematic equations for dust-like matter and differential 

equations for the vacuum potentials. 

 In section 4 we will describe the geometry of the physical vacuum. 

 In section 5 we will consider the influence of the physical vacuum on moving particles. 

 In section 6 we will give cosmological applications of the proposed gravitational theory. 

 

2. Differential correlations of Weyl’s geometry 
Let us note the following properties of the covariant derivative i∇  based on Weyl’s connection and 

the curvature tensor i

jknR  of Weyl’s geometry [1,2]: 

,    ,jk jk

i jk i jk i ig g g gλ λ∇ = ∇ = −            (3) 

,   ,

,   ,   ( ).

i i i p i p i m

jkn k jn n jk jn pk jk pn jmk jk

m m m

jkn jnk ijkn im jkn ijnk ijkn jikn ij n k k n

R R R

R R R g R R R R g λ λ

= ∂ Γ −∂ Γ +Γ Γ −Γ Γ =

= − ≡ = − = − + ∂ − ∂
  (4) 

 Since ,i i

jk kjΓ = Γ  we have the Bianchi identities [3] 

0.i i i

m jkn n jmk k jnmR R R∇ +∇ +∇ =            (5) 

 Using formulae (3)-(5), we come to the differential correlations for the Ricci tensor :ikR  
1 1
2 2

( 2 )[ ( )] 0.mk mk m k k m

m m R g Rλ λ λ∇ + − + ∇ −∇ =        (6) 

 From (1) and (6) we derive the following generalized differential correlation for the energy-

momentum tensor ikT  containing the vacuum potentials :iλ  
4( 2 )[(16 / ) ] 0.mk k m m k

m m f c Tλ π λ λ∇ + +∇ −∇ =        (7) 

 

3. Generalized kinematic equations for dust-like matter and differential 

equations for the vacuum potentials λ
i
 

Let us choose the standard gauge for the metric tensor and consider the energy-momentum tensor 

for dust-like matter. Then it takes the following form [3]: 
2 2 0 2 1 2 2 2 3 2

0 /  / ,    ( ) ( ) ( ) ( ) ,ik i k i k

ikT c dx ds dx ds ds g dx dx dx dx dx dxρ= = = − − −  (8) 

where ix  are arbitrary coordinates, ix  are rectangular coordinates in a local inertial reference frame 

and 0ρ  is the rest mass density of the considered dust-like matter. 

 First, let us write down the differential equation of rest mass conservation in a local inertial 

reference frame: 

0( / ) 0.  m

m dx dsρ∂ =              (9) 

 In an arbitrary coordinate system this equation acquires the form 

0( 2 )( / ) 0.m

m m dx dsλ ρ∇ + =             (10) 

 Substituting formula (8) for the energy-momentum tensor ikT  into correlation (7) and using 

(10), we find 
2 2 2

0 ( / /  / ) ( /16 )( 2 )( ).k k m n k m m k

mn m md x ds dx ds dx ds c fρ π λ λ λ+Γ + ∇ + ∇ −∇  (11) 

 Let us use the following covariant identity [4] which can be easily proved by choosing a local 

inertial frame: 
2 2 1

2
/ ( / /  / ) 0,   ( ),k k m n k ks

k mn mn m sn n ms s mndx ds d x ds dx ds dx ds g g g g+Γ = Γ = ∂ −∂ − ∂  (12) 

where k

mnΓ  are the classical Christoffel symbols. 

 Multiplying now Eq. (11) by /kdx ds and using identity (12), we obtain the equality 
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2

0/ [( 2 )( ) (8 / ) ] 0.k m m k k

k m mdx ds f cλ λ λ π ρ λ∇ + ∇ −∇ − =     (13) 

 Since kdx  is arbitrary, from (13) we derive 
2

0( 2 )( ) (8 / ) .k m m k k

m m f cλ λ λ π ρ λ∇ + ∇ −∇ =        (14) 

 These four equations are the sought differential equations of the second order for the vacuum 

potentials kλ . They present the conditions of consistency of the four equations (11). 

 From Eqs. (11) and (14) we get the sought kinematic equations for dust-like matter containing 

the vacuum potentials kλ : 
2 2 1

2
/ /  / 0.k k m n k

mnd x ds dx ds dx ds λ+Γ + =        (15) 

 

4. Geometry of the physical vacuum 
Consider a big region of the physical vacuum in a coordinate system in which the vacuum is 

homogeneous and isotropic and apply the well-known Robertson-Walker metric [5] for its 

description in the following form: 
2 2 2 2 2 2 2 2 2[ /(1 ) ( sin ],   ( ),ds A d dr Kr r d d A Aη θ θ ϕ η= − − − + =   (16) 

where K  can take the values 1,  1 or 0− , η  is a time coordinate and , ,r θ ϕ  are spatial spherical 

coordinates. 

 In the considered coordinate system the vacuum potentials iλ  are as follows: 

0 0 1 2 3( ),   0.λ λ η λ λ λ= = = =           (17) 

 Let us represent the components i

kT  of the energy-momentum tensor of the physical vacuum in 

the following form, using formula (8), since the vacuum is very rarefied, where 0ρ  is its rest mass 

density: 
2

0 /  /i i

k kT c dx ds dx dsρ= .           (18) 

 Then, substituting metric (16) in the gravitational field equations (1), we obtain 
2 4 0 1 1

0 1 0

2 2 4 0 1 1 2 3

0 1 1 2 3

3 / (4 / )( 3 ),   / / 2,

(2 / 2 ) (4 / )( ),   .

A d d f c T T A dA d

A K d d f c T T T T T

α η π α η λ

α η α π

− −

−

= − − = −

+ + = + = =
  (19) 

 From Eq. (14) and expressions (17) for iλ  we find 

00,    0.i k k iλ λ ρ∇ −∇ = =            (20) 

 Therefore, the rest mass of vacuum particles is zero, they move at the speed of light, and from 

(18)-(20) we get 
2 1 2 3 1 0

0 1 2 3 1 00,   ,   / 3.m

mT c T T T T Tρ= = = = = −        (21) 

 Multiplying the second equation in (19) by 3, adding the first equation in (19) to it and using 

(21), we find 
2/ 0,    1,0.d d K Kα η α+ + = = ±          (22) 

 This equation has the following solutions, where 0 constη = : 

0 0

0 0

1) 1,   th( );    2) 1,   cth( + );

3) 1,     tg( );  4) 0,     1/( ).  

K K

K K

α η η α η η

α η η α η η

= − = + = − =

= = − + = = +
    (23) 

 From (23) we get that the only nonsingular solution to Eq. (22) is 0th( )α η η= +  when 1K = − . 

In this case from (16), (19) and (23) we have 
2 2 2 2 2 2 2 2 2

0

0 0 0

0 4 2 2

1 2 3 0 0 0

( ) exp( )[ /(1 ) ( sin  )],

2th( ) / ,   ( ),   1,   th( ),

0,    (3 / 8 ) exp( )ch ( ),

ds A d dr r r d d

d d K

T c f A

χ η θ θ ϕ

λ η η χ η χ χ η α η η

λ λ λ π χ η η− −

= − + − +

= − + + = = − = +

= = = = − − +

  (24) 

where ( )χ η  is an arbitrary differentiable function and 0 constA = >0. 

 Let us now choose the standard gauge 0χ =  for this metric. Then from (24) we derive 
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2 0 2 2 2 2 2 2 2 2

0 0

0 0

0 0 0 0 0 0 0 0 1 2 3

( ) /(1 / ) ( sin  ),   ,

(2 / )th[( ) / ],    ,   ,    0,

ds dx dr r A r d d r A r

A x A x A A

θ θ ϕ

λ β η β η λ λ λ

= − + − + =

= − + = = = = =
 (25) 

where the vacuum potentials iλ  are taken in the coordinate system 0( , , , ).x r θ ϕ  As is seen from 

metric (25), its spatial part presents the Lobachevsky metric with the radius 0.A  

 Thus, we have come to a nonsingular cosmological solution in which the physical vacuum is 

described by the Lobachevsky geometry with the constant radius 0A  and has time-dependent 

negative energy density 0

0T and potential 0λ .  

 

5. Influence of the physical vacuum on moving particles 
First consider a free movement of a material point in the physical vacuum with the potential 0λ  

along the axis 1x  of a rectangular coordinate system 1 2 3( , , )x x x . Then from the kinematic equations 

(15) and formulae (25) we get 
2 1 2 0 1 2 3

0

2 0 2 1 2 0

0 0 0 0

/ /  / 0,    0,

( ) ( ) ,    (2 / )th[( + )/ ].

d x ds dx ds dx ds x x

ds dx dx A x A

λ

λ β

− = = =

= − = −
      (26) 

 Solving this equation, we find 
2 2 2 4 2 2 2 1/ 2

0 0 0 0

1 0

0 0

( ) ch ( / ),   (1 / ) ,

/ ,   ( ) / ,   const 0,

E m c d c A E m c V c

V dx d x c d

τ

τ τ β

− −= + = −

= = + = ≥
     (27) 

where 0 and E m are the energy and rest mass of the considered material point, respectively, and τ is 

a cosmological time. As follows from (24) and (25), the zero time 0τ =  corresponds to the 

maximum absolute value of the vacuum energy density. 

 Let us apply formula (27) to a photon. Then we get 
1/ 2 2

0 0 0ch ( / ),    0,E h d c A mν τ−= = =           (28) 

where ν  is the photon frequency. 

 It should be noted that formula (28) leads to the Hubble’s law giving the relation between the 

redshift z of the frequency ( )lν ν= of the radiation of a galaxy and the distance l  gone by its 

photons: 

0 0 0[ (0) ( )] / ( ) ( / ) ,    2 / ,   ,   / ,z l l H c l H c A l A A cν ν ν τ= − = = � �   (29) 

where H  is the Hubble’s constant and 0A  is the space curvature radius of the Universe. 

 Thus, we come to a new interpretation of the Hubble’s law. Namely, this law can be interpreted 

as the result of the influence of the vacuum potential 0λ  on the radiation of galaxies. 

 Consider the influence of the vacuum potential 0λ on a non-relativistic material point having the 

mass 0m  and vector V of its velocity relative to the physical vacuum. From Eq. (26) we derive that 

the small force vacF which acts on the material point from the physical vacuum is as follows: 
2

vac 0 0 0 0 0,    (2 / )th( / ),    ( / ) 1.cm A c A cλ λ τ= = −F V V �      (30) 

 For large positive values of the cosmological time τ  from (30) we get the asymptotic formula 

for the vacuum force vacF : 

vac 0 0 0(2 / ) ,    ,   const 0.c A m Aτ= − → +∞ = >F V        (31) 

 

6. Cosmological applications 
 1) As follows from formula (27), the kinetic energy of free particles exponentially 

decreases when the cosmological time 0 / .A cτ �  That is why we come to the conclusion that the 

early Universe, for which the cosmological time τ  is near zero, was very hot, similar to the 

standard cosmology. Hence, the well-known theoretical results of the standard cosmology for the 
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early Universe concerning the primordial nucleosynthesis and cosmic microwave background 

radiation [5] could be valid in our conception. 

 2) As follows from formula (29), the proposed theory, as well as the standard cosmology, 

describes the well-known Hubble’s law, but explains it as the result of a vacuum field influence on 

the frequency of  photons. 

 3) In contrast with the standard cosmology, the proposed generalization of the Einstein 

gravitational theory describes a nonsingular Universe. 

 4) As follows from formula (30), when the cosmological time 0,τ >  small decelerating forces 

act on stars of galaxies. Therefore, stars of a galaxy should move in spiral orbits slowly approaching 

the galaxy centre. This conclusion allows one to explain the observed spiral structure of many 

galaxies. 

 5) Old stars approaching the galaxy centre for a sufficiently long time could be near the centre. 

Hence, the proposed theory allows one to explain the well-known fact that the galaxy central 

condensation is mostly composed of old stars, whereas the galaxy spiral arms contain a large 

number of young stars [6]. 

 6) Since in the proposed theory the stars of the spiral arms of a galaxy approach its centre, the 

earlier the spiral arms of a galaxy were formed in the past, the closed they are at present to the 

galaxy centre. This conclusion just corresponds with observational data. Namely, in passing from 

subclass c of the spiral galaxies to subclass b and then to a, we observe an increasing percentage of 

old stars and, at the same time, a decreasing spreading of the spiral arms [6]. 

 7) In a similar manner the satellites of the Sun planets should slowly approach them. This 

allows one to explain the formation of the rings of Saturn, Jupiter, Uranus and Neptune. Such a 

formation can be possible after the moment when a satellite reaches the Rosh radius of its planet 

and tidal forces begin to disintegrate the satellite surface. 

 8) Since the Mars satellite Phobos moves about Mars at the Rosh distance from the planet [7], a 

very rarefied ring around Mars could form. It is worth noting that the action of particles of this 

hypothetical ring could explain unexpected failures to communicate with a number of spacecrafts 

and probes approaching the Martian surface. For example, such failures happened to the Russian 

“Phobos-2” in 1989, to the American “Mars Observer” in 1993 and “Mars Polar Lander” in 1999 

and to the British “Beagle-2” in 2003. 
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Разностное уравнение, описывающее эмпирический закон 

Тициуса-Боде 
 

П. Н. Антонюк 
МГТУ им. Н. Э. Баумана 

 
Характеризующий Солнечную систему закон Тициуса-Боде представлен разностным уравнением, с 

помощью которого установлена математическая связь планетных расстояний с итерациями метода 

Ньютона. Высказана гипотеза о применимости этого уравнения к планетам в других звёздных 

системах. 

 

1. Введение 

Известны различные попытки найти дискретный закон пространственного распределения 

планет в Солнечной системе. Например, Иоганн Кеплер (1571-1630) в «Космографической 

тайне» сопоставил орбитам планет последовательность концентрических сфер, вписанных 

или описанных вокруг вложенных друг в друга правильных многогранников, называемых 

телами Платона. Солнечная система была представлена последовательностью 

геометрических фигур возрастающего объёма: сфера Меркурия, октаэдр, сфера Венеры, 

икосаэдр, сфера Земли, додекаэдр, сфера Марса, тетраэдр, сфера Юпитера, куб, сфера 

Сатурна. Георг Вильгельм Фридрих Гегель (1770 – 1831) в своей философской диссертации 

«Об орбитах планет» связал планетные расстояния с числовой последовательностью 

1; 2; 3; 4; 9; 16; 27, 

содержащей степени двойки и тройки. Наиболее удачным оказался так называемый закон 

Тициуса-Боде.   

 

2. Эмпирический закон Тициуса-Боде. 
Немецкие астрономы Иоганн Даниель Тициус (1729-1796) и Иоганн Элерт Боде (1747-1826) 

во второй половине 18 века предложили эмпирическую формулу для средних расстояний 

планет от Солнца, измеренных в астрономических единицах: 

nbanr 2    ⋅+=   )  ( Z∈n .         (1) 

Здесь a = 0,4; b = 0,3 . Z – множество целых чисел. Каждая планета имеет свой номер n: 

n = − ∞ (Меркурий), n = 0 (Венера), n = 1 (Земля), n = 2 (Марс), n = 3 (пояс астероидов или 

гипотетическая планета Фаэтон), n = 4 (Юпитер), n = 5 (Сатурн), n = 6 (Уран). Нептун из этой 

зависимости выпадает, а Плутону приписывается номер n = 7. Допустимыми являются такие 

значения n , которым соответствуют целочисленные значения степени двойки. 

 Недавно в астероидном поясе Койпера (обширной зоне, лежащей за орбитой Нептуна) 

были открыто несколько планетообразных тел: 2003 UB313 (Ксена – десятая планета), 2003 

EL61 (Санта), 2005 FY9 (Истербанни), 2003 VB12 (Седна), 2004 DW (Оркус), 2002 LM60 

(Квавар) и так далее. Ещё только предстоит систематизировать эти тела и осмыслить их роль 

в рамках закона Тициуса-Боде. Трудно также понять имеет ли какое-либо отношение к 

закону Тициуса-Боде кометное облако Оорта, важный объект Солнечной системы.     

 Данная последовательность { }   nr  планетных расстояний удовлетворяет аддитивному 

линейному разностному уравнению 

nrnrnr  311 2 =++−   )  ( Z∈n .        (2) 

С другой стороны, общее решение уравнения (2) представляется формулой (1) с 

произвольными константами  a  и  b . С последним уравнением связано ещё одно разностное 

уравнение 

nrnrr   21 =++∞−    )   ( ar =∞− ,       (3) 

являющееся первым интегралом уравнения (2). 
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3. Асимптотическое разностное уравнение метода Ньютона. 
Последовательные приближения  nx   к корню  ∗x   уравнения  ( ) 0=xf   могут быть найдены 

при помощи нелинейного разностного уравнения 

( )
( )nxf

nxf
nxnx

′
−=+   1 .            (4) 

 При  ∞+→   n   последовательность  { }  x n   сходится к  ∗x  . Формула (4) лежит в основе 

метода Ньютона, или метода касательных, широко применяемого для решения уравнений. 

Метод Ньютона позволяет решать алгебраические и трансцендентные уравнения, системы 

уравнений. Более того, этим методом решаются дифференциальные уравнения и 

функциональные уравнения (метод Ньютона-Канторовича).  

 При достаточно больших значениях номера  n  последовательность  { }  x n   подчиняется 

асимптотическому мультипликативному линейному разностному уравнению 

3
1

2
1 ny

n
y

n
y =

+
⋅

−
  )  ( Z∈n ,         (5) 

в котором последовательность  { ∗−= xnxny  }  задаёт погрешности, или ошибки, для 

приближённых значений  nx   корня  ∗x  . Если  ∞+→   n  , то  ∗→ xnx  ,  0→ny  .  

Уравнение (5) имеет общее решение 

n
BAny 2⋅=   )  ( Z∈n           (6) 

и первый интеграл 

2
1 nynyy =+⋅∞−   )( Ay =∞− .        (7) 

Здесь  A  и  B  –  произвольные константы. 

 Вместо погрешности  ∗−= xnxny   можно также рассматривать точность 

   lg nynd −=  

для приближённых значений  nx   корня  ∗x  . Если  ∞+→   n  , то  0→ny  ,  ∞+→   nd  .  

Используемый здесь десятичный логарифм связан с выбором десятичной системы 

счисления. Число правильных (верных) десятичных знаков, взятых после запятой, для 

приближённого значения nx  корня ∗x   определяется как целая часть точности:  [ ]  ndnD = . 

 В случае выбора системы счисления с основанием  p , отличным от десяти, точность 

приближённых значений  nx   корня  ∗x   будет задаваться аналогичной формулой 

   log nypnd −=  . 

 Уравнения (5), (6) и (7), характеризующие погрешность, могут быть также переписаны 

для точности: 

ndndnd  311 2 =++−   )  ( Z∈n ,        (8) 

n
nd 2    ⋅+= βα    )  ( Z∈n ,         (9) 

ndndd   21 =++∞−  )   ( α=∞−d .        (10) 

Здесь  α   и  β  –  произвольные константы. 

 

4. Математическая эквивалентность уравнений. 
Уравнения (1), (2), (3) для планетных расстояний и уравнения (6), (5), (7) для погрешностей в 

методе Ньютона математически эквивалентны друг другу, но отличаются формой записи: в 

первом случае имеет место аддитивная форма записи, во втором – мультипликативная. 

Рассмотрение точности вместо погрешности позволяет уйти от мультипликативной формы 

записи к аддитивной. В результате приходим к следующему выводу: планетные расстояния и 

точности в методе Ньютона описываются одинаково, так как уравнения (1), (2), (3) 

идентичны уравнениям (9), (8), (10). 
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5. Заключение. 
В настоящей работе даны разностное уравнение (2) и его первый интеграл (3), описывающие 

планетные расстояния в соответствии с законом Тициуса-Боде. Кроме того, при помощи этих 

уравнений установлена математическая связь последовательности планетных расстояний с 

последовательностями  погрешностей и точностей в итерационном методе Ньютона. 

Асимптотическая универсальность метода Ньютона (уравнение (5) для { }   nx  не зависит от 

конкретного вида функции f) и аналогия между последовательностями { }   ny , { }   nd , с 

одной стороны, и { }   nr , с другой стороны, приводят к гипотезе о возможной 

универсальности разностного уравнения (2), представляющего закон Тициуса-Боде: 

уравнение (2) определяет средние расстояния планет в других звёздных системах (а не 

только в Солнечной системе). Каждой звёздной системе соответствуют свои значения 

констант  a  и  b. 
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Dispersion of flat wave on dot charged center in approximation 

geometrical optics 
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Trajectory of light rays in vacuum calculates by Ferma principle, which formula of rays in static 

gravity field appear as [1] 

00

dl
δ = 0

g

    
        
    
∫∫∫∫ , 

(1) 

00g  - is time component of metric tensor, which for charged spherical body might be written the 

following way [2]: 

2

00 2
g = c 1- +

r r

a b    
    
    

, 
 (2) 

where 
2

2GM
=

c
a , 

2 2

4

Gk q
=

c
b , r  - is distance from center of body, M - is mass of body, q - is 

volume of charge, с=3⋅10
8
 m/s - is speed of light in vacuum, 

9

0

1
k 9 10

4
= ≈ ⋅

πε
 m/F, G=6,67⋅10

-11
 

Н⋅m2
/kg

2
 - is gravity number. 

Taking into account formula of element of length in polar system of coordinates 

2 2dl = r + r dϕ ϕ  equation (1) might be written as follows: 

2 2

2

2

r + r d
δ = 0

c 1- +
r r

a b

ϕ ϕ

    
    
    
                            

∫∫∫∫ . 

In order to find solution using methods of calculus of variations let us write down the Lagrange 

equation 

dL d dL
- = 0

dr d drϕϕ

    
        
    

, 

where  

2 2

2

2

r + r
L =

c 1- +
r r

a b

ϕ

    
    
    

. 

Finally we have the equation below 

(((( ))))
4 2 2 3 2 2 2

2

2r + 4r r -3 r -5 r r + 4 r + 6 r
= r r

2 r - r +

a a b b

a b

ϕ ϕ ϕ
ϕϕ

⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅
⋅⋅⋅⋅  

(3) 

Bringing in characteristic length 0r  and replacing variable 0 1r = r r  in the equation (3), we 

receive (further index of new variable is dropped out): 
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(((( )))) (((( ))))4 2 2 3 2 2 2

2

0 0

2

2

0 0

2r + 4r r - 3r + 5r r + 4r + 6r
r r

= r r

2 r - r +
r r

a b

a b

ϕ ϕ ϕ

ϕϕ

⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅
⋅⋅⋅⋅

    
    
    

 

(4) 

To model solving we select parameters of dot charged center as for the electron 
-19q = 1,6 10⋅⋅⋅⋅  

kl, 
-31M = 9,1 10⋅⋅⋅⋅  kg. Then: 

-581,35 10a ≈ ⋅ m, 
-62

1,7 10b ≈ ⋅  m
2
.  

Let us consider size of characteristic length as an assessment as 
30

0r 10−=  m and, therefore, 

-28

0

1,35 10
r

a
≈ ⋅ , 

-2

2

0

1,7 10
r

b
≈ ⋅ .  

Consequently, having characteristic lengths -30

0r 10�  number 
0r

a
 in equation (4) we can ignore 

in comparing to 2

0r

b
. Taking this into account, equation (4) might be written as follows: 

(((( ))))4 2 2 2 2

2

0

2

2

0

r + 2r r + 2r + 3r
r

= r r

r +
r

b

b

ϕ ϕ

ϕϕ

⋅⋅⋅⋅
⋅⋅⋅⋅ . 

     

(5) 

This equation might be integrated one time in distinct form: 

4 2

2

0

2

2

0

Cr - r -
rdr

= ±r
d

r +
r

b

bϕ
. 

(6) 

Number of integration C might be found through value of target parameter of ray 2

1
C =

L
 

(target parameter L – is the distance from initial direction of ray dispersion to the center of charge), 

this permits to write minimal distance, that ray is approaching to the center: 

2 4 2

2

02

MIN

L + L + 4L
r

r =
2

b

. 

(7) 

According to (7) when L is increasing, size of minimal distance MINr  aims to L - i.e. dispersion 

do not observed. 

Equation (5) was calculated using the Eller method. Example of calculation of rays trajectories 

near charged dot center is shown on Fig.1. The results of calculations show that, near charged dot 

center ray trajectory twists rays disperse into different directions depending on L. In this case even 

reflection of rays is possible. 

There is an area behind the center, where rays cannot enter. In accordance with (7) further from 

the center smaller distortion of trajectory is. 

Using calculated ray trajectories it is possible to model phase surface of flat wave movement 

when it falls on charged dot center. 

The results of calculation are presented on Fig. 2. As one can see there is dispersion of flat 

wave. At the same time dispersed wave is in fact spherical one. 
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Fig. 1. Rays trajectories in electric field of dot charged center. Characteristic length 10

-31
 m. (Circle radius 

is half of characteristic length). Rays go from right to left. 

 

As follows from (2) while approaching the center the time component of metric tensor grows 

up. This leads, finally, to deformation of flat phase surface of wave near the center (Fig. 3). 

 

 

 
 

Fig. 2. Dispersion of flat wave on dot center. Arrow shows direction of waves. 
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Fig. 3. Distortion of phase surface of flat wave in approaching to charged center. Wave direction is shown 

by arrow. 

 

In conclusion if should be noticed that “taking into consideration” effects predicted by Gravity 

Theory permits to model dispersion of rays on charged centers without knowing their inner 

structure and any hypothesis regarding voluminous distribution of charge. Static charged center 

must be a source of spherical waves when falling on outside electromagnetic radiation it is 

dispersing. 
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The influence of spin-spin interaction on the energy levels of the 

Moon- Earth system 
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The influence of spin-spin interaction in quantum relativistic weak gravitation Moon-Earth problem was 

considered. The levels energy and levels width of two bodies system such as Moon and Earth were 

calculated. The influence of real form of Earth was considered also. It is shown that the end light velocity 

influence is important in this case. The evolution of Moon orbit is discussed. 
 

1. Introduction 
The simplest two bodies problem of quantum gravitation theory which is very impotent is problem 

of the Moon-Earth system. For example, it's very interesting to compare quantum levels of these 

system with quantum levels in solid state on the Earth and the Moon including widths.    
  

2. Analysis of problem 
We have considered the more complete model of quantum gravitation theory for Moon-Earth 

system. Our relativistic model has included spin-spin interaction and non spherical form of Earth 

also. We have supposed that the Moon and the Earth are the point particles. 

The normalized whole mechanical energy of particle in gravitation field had in our case the 

following form: 

1)(
2

1

12/1

002

1

−
+

=
cm

EE
g

cm

E ss ,            (1) 

where 1m is a mass of small  particle (the Moon), c is light velocity, 00g  is metric component, 

ssEE ,1 are free part energy, spin-spin interaction energy. For the gravitation field with central 

symmetry 00g is known [1] and 00g = )
2

1(
2c

ϕ
+ where ϕ  is gravitation potential. It contained 

contribution from non spherical form of the Earth and ratio 
2

2

c

ϕ
  was equal )1(

1
2ηη

f
+ where η = 

gr

r
, r is orbit radius, gr is gravitation radius, 

2

22

c

Gm
rg = , G  is the Newton's gravitation constant, 

2m is a mass of big particle (the Earth), f  is non spherical form parameter, f = 
2
)(

gr

R
µ , µ is 

dimensionless small parameter ( 310*3 −≈µ   [2]), R is a radius of the Earth. We have used for 1E  

the following expression: 2

1

2/12

1 )1( cmE ξ+= where 
cm

p

1

=ξ . We have supposed that the Moon 

and the Earth move in one plane. Then we have the following formula for ssE : 
2

13

1 cm
f

η
−  where 

),(
3

21

4

211
mm

m
KKf

pl
=  21 ,KK are integer and equal 

hh

zz LL 21 , where zz
LL 21 , are z-projections of 

angular momentum,  h  is the Dirac constant. So we have formula 

1))1(())1(
1

1(
3

12/122/1

22

1

−−++−=
η

ξ
ηη

ff

cm

E
,       (2) 

 As in work [3] we have used the Bohr's rule of quantization  

gNΛ=ξη , ,...3,2,1=N              (3) 
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Using approximation  
2

1)1(
2

2/12 ξ
ξ +≅+  and condition (3) and conserving terms of order not 

upper 
3

1

η
we have produced new form of formula (2) 

)
4

)(

2
(

1

2

)(

2

1
2

132

2

2

1

gg N
f

fN

cm

E Λ
++−

Λ
+−=

ηηη
,      (4) 

We have found that minimum of energy take place at value of η determined by formula 

))
)(

)2(3

)(2

3
1(1()( 2/1

4

1

2

2

N

ff

N
N

gg

g
Λ

+
−

Λ
−±Λ=η .       (5) 

So integer N must be positive, it is determined by formula 

N
2/12/1

1 )))2(3
16

9
(

4

3
(

1
ffN

g

c +++
Λ

=≥ .        (6) 

Parameter f is more than unity ( 1310*2 ) as ratio 
gr

R
> 710 .Another parameter 1f more than unity 

also ( 1001 ≈f ). Evaluation of parameter gΛ was equal 6310*9 − and .1062≅cN  So we have r > gr  . 

Evaluate τ - time of transition between levels with numbers N and 1+N .  Radiation power of 

accelerated charge q  is determined by formula 

3

2
−=

dt

dW
 

3

2)(

c

qa
,              (7) 

where a is acceleration. We have supposed that mGq 2/1= .Our substitution is step which is analog 

of some assumption in [4]. Using dependence )
2

1
(

32

2

2

1
ηηη

fNN
CC

cmW −+−= in form  

)
2

1
(21

η
−= cmW , we have produced formula 

2

1

3

2

2 )(6 η
η mc

Gm

d

dt
= .              (8) 

Integrating formula (8) we have deduced formula for τ  

5

34

2

7

1

12

)(12 N
cmm

Gm pl
=τ .             (9) 

Using formulas forτ andW , we have found formula for )()1( NWNWW −+=∆ and formula for 

evaluation recovering of energy levels  

26

2

2

4

1

12 Nm

mm

W
pl

=
∆τ

h
.             (10) 

 

Conclusions 
1. Relativistic effects change quadratic dependences the energy  and  orbit radius of number. 

2. Relativistic effects determine the range of shut orbits. 

3. Relativistic effects determine crossovers of energy levels . 
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M��xMWR�UV^c_3a`bO�"��dyb�fT�GMW_3b M
�y^cfTb+f2PWZeN?PWUVd�Z=RVMW}�b3f"MWRTb��xMWRTMWa`acb3aEMWwG��ã�å©^`fz}�P:��^`wG���©^cUTd._3PWwGfYUVMWwCU
�Sb3acPg_+^cU�XDæçMWacPSwG�8UVdGb�è.|�M��g^`f�PWZ"Z=RVMW}�b%ãÆ�«i~U�^`f�MWfYfTvG}�b3�DUVdxM�U�UTdGb3^cR�PSRT^c�S^`wGf+n(é0MOwG�«é)å�n
_3PS^cwG_3^c�Gb,�©dyb3w.UTdGb��Ga`MWwGb,a`^c�SdCUzZ=RYPSwCUm�y^`RTb+_+UTb3�8MOUzUVdyb��xMWRTMWa`acb3a$MOwG�Sa`b�êqë�RTbqMO_�dGb3fmUTdGb��?PS^cwJU"é
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Ã¦M�a MOUTb3RVMOa�NQb3MW}�^`f�}�P:��^`wG��Z=RTPS}ªNQPWUYUVPS}�UVP�UVPS��^`w�è��)|��Ga`MWwGb,MWf©fTdGP:�©w�^cw�Ê�^`�G��o:MCÄÇ��É4U"UTdG^`f
^`wG^�UV^ MOa�}�PW}�b+wJUmM�ac^`�SdCU"fT�Gdyb3RTb�Ã�dGb+}�^cfT�GdGb+RTb,UVP�UTdGb�Z�MWaca`^cwG� Z=RTPSwCUÇÄ�fYUVMWRYUTfmUVP�fT�GRYbqMW�8PWvyUmZ=RYPS}
é��e��dGb��xMWRTMWa`acb3a�MWwG�Sacb�êqë�^`f��Gb�¨xwGb3�.MWf

_3PWfÀêqë���_+PSf���Ã��	��
GÄ�����EÃ��	��
GÄ��æ���������� Ã�
����+Ä Ã�ºg��o
Ä

Ê�^`�SvyRTb�oW��� ��!�"�#%$'&	(*)+#-,/.0�213,�)+#4)65718&-9)ã�å :<;�)+13,�)+#>==æ?�@�A�2#CBD1�&-97EF,/G+&	1H(��2"JID=8�K�L�2#CB��'��å<�NMC(*)+:
MO�0GP�21Q,�)+#SRT"U1�&-9NI ,3B	9LEF,/G+&	1VR 9W�2;�XDRY��Z[)2R'�	$'&-9 \TI']+"NMO�2(��2E8E^9 E_EF,8#%9'IL,8#`1�&-9a\29 E^)0$ ,813"�I<MO�	$'9VMCE/�2#%9
$')+( (*9'I<M-)+#CB2,8#	G71<)�I "+#%$'&	(')+#%)+bPIc;�)+1Q,�)+#OId)65H�'�*e[�'��å?�2#CB,æd�c,8#Ufgb�$ EF,3B	9W�2#LMCE/�2#%9L=8�H��oa,^IhbPI09WB
5i)+(d(�� MC,3B2,813,�9'I<�2X

dGb3RYbj�6^cf�UTdGb%�Sb3acPg_+^cU�X æ ^`wDvGwG^�UVf�PWZh�
nH�	��
È^`f�M8�WMOa`vGb�PWZ2RTMW�G^c�G^cU�XS�Æ^`wDvGwG^�UVf�PWZ?
��k��n
��Ã3�	�2
GÄ��9êqë�^cfzM��xMWRTMWa`acb3a$MOwG�Sa`bOnl
�^`f�UTdGb�L$PSNGMW_�dGb+��fY�JX._3PSwyfYU�MOwJU3n%�)^cf©UTdGb��Wb3acPg_+^cU�X�PWZ\a`^`�WdJU3�
��dGbmfYb3_3PWwG��b3�JvxMOa`^cU�Xa�m�����EÃ3�	���3Ä�^`w.Ã�ºg��o
Ä\^`f(�JwGP:�©w�Z=RTPS}�UVdGbmÅ'b3a�U�MWRTMW}�^y}�P��Gb3aI£�º�¥QMWwG��vGfTb+�
UVP��Gb+¨GwGb�M �xMORYUV^c_3acb2RVMW�y^`�G^�U�XQ�

�	�2��� oJ�Sºzacw,ÃTÃko�no�]ÄW�GÃko�pq��ÄYÄ2r Ã�ºg� ºSÄ

��dGb)¨xRTf�U"b+�JvxMWa`^�U�X�^`wÎÃ¦ºg�co:Ä'_qMWw%N?b,RYb+�©RY^cUTUTb3w�MWf

êqë��s��Ã3�	��
GÄ�*º2tPu2�'�<vHw�xzy�{@|�� Ã�ºg�ÒÁCÄ

��wyP
�©wMOf�UVdyb8L$PSNxMW_�dGb���fT�CX Z=vGwG_�UV^cPSw��Ïi~U�^`f�fTb+b3w Z=RTPW} Ã¦ºg��o
Ä UTdxMOU�Z=PSR�MWwCXDRVMO�G^`�G^�U�X*Ã¦MWwy�
^cUVf"�Sb3acPg_+^cU�XyÄzUTdGb3RYb ^`f)M��Gb�¨xwG^�UVb MWwy�Sa`b êqë?��ÊÀPWRmUVdGb�wGb3�CM�UV^c�Wb�MWRT�WvG}�b+wCU)PWZ�UVdGb�L$PSNGMW_�dGb+��fY�JX
Z=vGwG_+UT^`PSw�UVdGb4�GMWRVMWaca`b+aJMWwG�Sacb4êqë,_�dxMWwG�Sb+f\UVPm¼Vp êqë�£Òº�¥¦nW�©dG^c_�d _3PSRYRTb+fT�?PSwG�Gf\UTPmUVdGb®fVMW}�b'�Wb3a`P�_3^�U�X
NGvyU©Z=PSR4UVdyb,PW�G�QPWfT^cUTb)�G^`RYb3_�UV^`PWw��
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L$b�U�vGf�_+PSwGfY^`�Gb+R�M�fY�xMW_+b�|~UT^`}�b��?PS^cwJU�Ã�� � æd�K���YÄ�^cwÎZ=RVMO}�b�ãÆ����dyb�a`^c�SdCU�RTMqX�Z=RYPS} UVdGb
PSRT^c�S^`w�� �©^ca`aE�Sb+UmUVP�UVdy^`f2�?PS^`wCUm^`w.UT^`}�b��l�2��Ã¦{e^`wGf�UVb+^`w���f2fT^c�SwxMWa Ä©NyvyU)UVdGb�a MOUTb3RVMOa]N?bqMW}���f2RVMqX
�©^`a`aQ_3PS}�b2UVdyb3RTb�¨xRYfYU©�©^cUTd�fYPS}�b)�Gb3a`M:X§Ã�RTb+a MOUT^c�Wb3acX�UVP���Ä'^`w�UVdyb,}�PS}�b3wCU©PWZIUV^c}�bc�
	�MWf

�'�
	m����_3PSf?êqë���æ?�y_+PSfÀêqë����'�y_+PSf�?êqë� Ã�ºg��pJÄ

MWwG��UVdGb+w�M�wGb+�*a`^c�SdCU4fT�ydGb3RYb,f�U�MWR�UVf4UTP fT�GRYbqMW��PSvyU4Z=RYPS} UVdGb��G|~�QPS^cwCUq��Å®X�UVdGb)�S^��Sb+w�}�PS}�b3wCU
PWZ]UT^`}�bc��M wGb��6fT�ydGb3RYb,�©^ca`a�fY�GRTb3MW��PSvyU©UVP UVdyb,RTMW�G^cvGf

�'��å���'� po�'�
	j���'� p���_+PSfÀêqë����'� p��Qæg�2� � ��å��� p��Qæ��2���O� Ã�ºg� ÓSÄ

MWwG�%Z=PSR��U�*æd�Ç�

�K��å� �K� po�'�y_+PSf�?êqë ���'�yfY^`w��?êqë����'�2Ã�o pDæ��K�2���ÇÄ�� Ã�ºg���CÄ

�©dGb3RYb��'�'^cf�UVdGb�a`^c�SdCU4fY�GdGb3RYb�RTMW�G^cvGf�Z=RTPS}�PSRT^c�S^`w�é�nGfTP�UVdGMOUV�K��å�� �K�Ç�
L$b�U�vyf,_�dyPgPSfYb U��'P�a`^c�SdCU)RVMqX�f)Z=RTPS} UVdGb+fTb�U��'P�fT�Gdyb3RTb+f3�,PSwGbOn �'�Çn$b3}�^cUYUVb+�§Z=RYPS} é�vywG�Gb3R

UVdGb)MOwG�Sa`b"êqë�UTP�UVdGb"è.|kM��g^cf®^cw�fTPS}�bm�ya MWwGbOnGMWwy��UVdGbmPWUVdGb+R3n-�'��åÇngb+}�^�UTUVb+��Z=RTPW}�é)å"Ã�acPg_3MOUVb+��MOU
�QÄ��?b3RY�Qb+wG�G^`_+vGa MOR�UTP�UTdGb"è.|�M��g^`f�^`w�UVdyb"fTMW}�bz�Ga`MWwGb�Ã�fTb+b2Ê�^c�G��o:MCÄ��I��dGRYb3b2fYb3�S}�b3wCUVf��K�K��æ?��MWwy�
�K��å2Z=PSRY}çM�RYb3_+UVMWwG�Svya MWR)UVRY^ MWwy�Sa`bO��Å'vyU,U��®P�fT^c�Gb3f�PWZ'UTRT^ MOwG�Sa`bOn_�K��MOwG�4�'��å�n]dxMq�Sb�wGP._+PS}�}�PSw
Ã�^`wCUTb3RTfYb3_�UV^`PWwÀÄ®�?PS^`wCU©MOU©wyP�}�PS}�b3wCU4POZ]UT^`}�b �ÇnGfYP�UTdGb+X�MWRTb)�xMORVMWaca`b3a?^`w%MOwJX�_�dGPSfYb3w�{evG_+a`^c�GbqMWw
�Ga MWwybW��É"f�RTMW�G^c�G^cU�X¹Ã�ºg� ºSÄmZ=PSR)UVdGb�a`^c�SdCU)�Sb+a`P�_3^cU�X�^`f)UVdGb�^`wg¨xwG^cU�XWn$UVdGb+wÎUVdyb�PSNgU�MW^cwGb3�§UVRY^ MWwG�Wa`b
UVRVMOwGfYZ=PSRY}�f�^`wCUVPÎUVdGb8LE[�L9PSR3n©}�PSRTb��GRTb+_3^`fYb3a�XSn©^`wCUVPÎUVdGb8�xMORVMWaca`b3a©ac^`wGb+f�^cw PSwGb�fY^`�Gb.PSw UVdGb
LEPWNxMW_�dGb��gfY�CX��ya MWwGb)^cw�UVdGb)�Sb+a`P�_3^�U�X�fT�xMO_3b,MWf©^cU©^cf�^`a`acvGfYUTRVMOUTb3��^cw�Ê�^`�G��oqN��
��dJvGf+n(UTdGb%LE[�LÏ^cw¹M.�Sb+a`P�_3^cU�XÎfT�GMW_3b�_+PSRTRYb3fT�?PSwG�yf�UVP�UVdyb�a`^`�WdJU�RVMqX�fa�'��MOwG�o�K��å,b3}�^cUYUVb3�

Ã¦MW_+_3PSRY�G^`wG�%UVP%UVdyb�ÌzvyX��Sb3wGf��GRT^cwG_3^c�Ga`bqÄ"Z=RTPS} �G^c¢Qb3RYb3wCU,�QPS^cwCUVf,MWwG�Î�G^c¢Qb3RYb3wCU�UT^`}�b3f�MWwy�¬fYX�wg|
_�dGRTPSwy^`¡3b+�¬�©^cUTdÎ�GMWRYUT^`_3acb�}�PWUT^`PSwÎæd�2NJX§UTdGb�fY^`�Gb�a`^c�SdCU,NQb3MW}�����dGb��GdCX�fT^c_qMWa(RTb3MWfTPWwÎZ=PSR�UVdGb
a MW_�� PWZ�^`wCUVb+RTfYb3_+UT^`PSw��QPW^`wCU(^`w�{�vy_3a`b+�GbqMOw�fT�GMW_3b"^`f�UVdGb©UV^c}�b��Gb+a MqXL�
	¹Ã=fTb+b Ã�º��ÒpJÄYÄ��]Émf®UTdGb©�WMOa`vGb
PWZ\UV^c}�b,�Gb+a MqXU�
	ÎZ=PSR"�S^c�Wb3w���MWwy�§æ7^cf"�Gb�¨xwGb+��NCXj��Ã=�©^cUTd�_�dxMWwy�S^`wG��æ UTdGb êqë�_�dxMWwG�Sb+f2NGvyU
wGPWU'UTdGb��+Ä�UTdGb3w�PWwGbm_3MWw�_3PWwG_3acvG�GbmUTdxMOU(UVdGb2NGMWfT^c_mRTb3MWfTPWw�Z=PSR�UVdGbm»z|~UTd��QPWfYUVvya MOUTbz��^`PWa MOUT^`PSw�^`w
UVdGb)�Sb+a`P�_3^�U�X�fT�GMW_3b,^`f4UTdGb�_3PSwGf�U�MWwCU"a`^c�SdCU'�Sb+a`P�_3^�U�X��GRT^cwG_3^c�Ga`bO�
�IP�¨GwG��PSvgU®ac^`�SdCU�RTM:X�f(_3PSRYRTb+fT�?PSwG�G^cwG��UTP�LE[�L.^`w�MWwGPOUVdGb+R®fY^`�GbOn�PWwGb"_3MWw�_3PSwGfY^`�Gb+R'M�a M�UVb3RTMWa

NQb3MW} UVP�MWwyPWUVdGb+R)�G^`RYb3_�UV^`PWwDÃ=Z=RTPW}äUVPW��UTP�N?PWUYUVPS}�Ä"^`w�UTdGb�fVMW}�b �Ga`MWwGb�Ã¦MOf,fYdGP:�©w¬^cw§Ê�^`�G� ºWM
MWwG��Ê�^`�G� ºONÀÄÇ�
ÊxPSR�ac^`�SdCU�RVMqX�f�_+PSRTRYb3fY�QPSwy�G^`wG�¹UTPÈUTdGb�LE[(LªÃ�^cwÐNQPWUTdfT^`�yb3f�Ä�Z=PSR�wyb3�CMOUT^c�Wb§MWRT�Svy}�b+wJU%POZ

LEPWNxMW_�dGb��gfY�CX�Z=vGwG_�UV^cPSw�Ã Z=PSR]æ��«tCÄ�nOPSwGb(fTdGPSvya`��vGfYb4Mz�xMW^`REPWZGa MOUTb3RVMOaCNQb3MW}�fI�G^cRTb3_�UVb+��PS�G�?PSfT^�UVb
UVP�è.|�M��g^`f+nQ^¦�ÒbO�zZ=RYPS} RT^`�WdJUzUVP�a`b+Z U�Ã=Z=PWR)æ���t�UVdGb�N?bqMO}�f©�'b+RTb �G^cRTb+_+UVb+�.Z=RTPW} acb+Z UzUVP�RY^`�SdCU�Ä�n
MWf©fTdGP:�©w.^cw%Ê�^`�y� ºO_�MOwG��Ê�^`�G� ºO���
��dJvGf+nSUVdGb®}�P:��^`wy�mRTb�Z=b3RYb3wG_+b4Z=RVMW}�b2Ã Z=PSR�æ��«t2MWwG���OPSR�æ��«tCÄI_3MWw�N?b4MWfYfTP�_3^ M�UVb3�,�©^cUTd�UVdGb

�Gb+¨xwy^cUVb�a MOUTb3RTMWa$a`^c�SdCU"N?bqMO}�f+�z��dyb�RTb+fYUmZ=RTMW}�b�Ã¦æ � tSÄ©^cfmMWfYfTP�_3^`MOUVb+���©^cUTd�UTdGb��G^cRTb+_+U2N?bqMO}�f
MOU,êqë � ¼[�Sº§Ã¦MWf�fTdyP
�©wÎ^`w�Ê�^c�G� ºWÄ���L$PSNxMW_�dyb+��fT�CX§Z=vGwG_�UV^`PWwÎdxMOf�UTdGb�fVMW}�b Z=PSRT} Z=PSR2UVdyb�RYb3fYU
Z=RVMW}�b)MWwG��Z=PSR®UVdGb)}�P:�g^cwG� PSwGb+f3nx^¦�ÒbO�e^cU'Z=PWa`a`P:�©f'UTdGb)�GRY^`wG_+^`�Gacb2PWZIRTb+a MOUT^c��^cU�XW��ÍgPGnxL$PSNGMW_�dGb+��fY�JX
Z=vGwG_+UT^`PSw%bÇ�y�yRTb3fYfTb+fmUVdGb�_+PSwGfYUVMWwCUza`^`�WdJU'�Sb3acPg_+^cU�X��GRT^cwG_3^c�Ga`b)M�U�
a���
�
��dyb�f�X�wG_�dGRTPWwG^`¡3MOUV^cPSw§}�b�UVdGP��8vGfTb+��UTP%RTb+�WbqMWa\UTdGb wGb�� �GdCX�fT^c_qMWaewxM�UVvGRYb PWZ4L$PSNGMW_�dGb+��fY�JX

�xMWRVMOa`a`b+agac^`wGb+f\^`f\MWa`fYP2Z=RTvG^�UTZ=vGag^`w fTPWac��^`wG�2UTdGb�}�MW^`w��yRTPSNGacb3}�PWZ?RTb3a`MOUV^���^cU�X)|EUVdGb��yRTPSNGacb3} PWZ?UV^`}�b
fYX�wG_�dGRYPSwG^`¡3MOUV^cPSw%Z=PSR��G^c¢Qb3RYb3wCU©fT�GMW_3b,�QPW^`wCUVf+�
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Ê�^`�SvyRTb�ºg��� ������)UE/�21<9 (��2E EF,/G+&	1cR 9W�2;�IA= 5i)+(,æ �×tJ��G2,8\29a1���)LMO�2,8(*I )657EF,/G+&	1 (��2"0Id�K� �2#CB �K��å
5i)+(hR )+18&�I ,3B	9'Id)65c18&-9�MCE/�2#%97=@16)'M��2#CB R )+131<)+;c�0e I "+#%$'&	(')+#%)+bPI�� ,81�&�ã�åK:<;�)+1Q,�)+#�æ?� XhRY���H�2(��2E8E^9 E
EF,8#%9'ID,8#�R )+18&4I ,3B	9'I )+# Z_)2R'�	$'&-9 \TI']+"�MCE/�2#%9'ea$')+(K(*9'I<M-)+#CB2,8#	G�1<)mI "+#%$'&	(*)+#%)+bzIU;�)+13,�)+#OID,8# � �2X
� &-9HMCE^)+1�I5i)+(zæ�� tm�2('9cI'&-)�� #m,8#S$<� �2#CBDB �2X

	 
 Ú�±8µ ���·z´�´�³�µ8¸q±�Ú�²�Ü ²e³eÚ�±8Ù�ÝW´�³�� Ú,²e¸3´�± Ú�±8µ Ûq¸���Ö�² Üm²eÖ�Ü2³
·©´�±8·zÜ)â.²

LEb�U�vGf�_3PSwCUV^cwJvGb��©^�UVd¹UVdyb�^cwGb3R�UV^`MWa®Z=RTMW}�b+f�ã MWwy�«ã�å�Z=PSR�æ � ty� �2wGb%_qMWw MWfYfTvG}�b�UTdxMOU
M§�GMW^`R PWZ"�G^cRTb3_�U�NQb3MW}�f�Ã=Z=RTPW}/UVPS�DMWwy� N?PWUTUTPS}�Ä�RTb3MW_�dGb3f�è.|�M��g^`f�MOU UTdGb%fVMW}�b�}�PW}�b+wJU�POZ
UV^`}�b�MWf)M��xMW^cRmPWZ�a`MOUVb+RVMWaIN?bqMW}�f Ã Z=RTPS} a`b�Z UmUVP�RT^`�WdJU�ÄzRYbqMW_�dGb+f2UVdGb �?PS^cwJUz�©dGb+RTb�NQPOUVd�PSRY^`�S^cwGf
_3PS^cwG_3^c�GbW�]Éma`a �G|��?PS^cwJUTf©Ã�^cwG_3acvG�G^cwG�2é�Ä�MWRTb��Sb��g^cUTb3���)fY^`}�vyacU�MOwGb3PSvyfTacXWnSMWwy��UTdG^`f�}�PS}�b3wCU�PWZÀUV^`}�b
^`f'vyfTvxMWacacX�_�dGPWfTb3w�MWf(UVdGbm^`wG^�UV^ MOaGPSwGbmZ=PWR'ã Z=RTMW}�b�Ã=UTdGbmfTMW}�bzZ=PSR4MOa`aÀ_3P�PSRT�y^`wxMOUTb3fVÄ��\��dGbm^`wG^�UV^ MOa
}�PS}�b3wCU©PWZ]UV^c}�b2Z=PSRzMWwCX �G|~�QPS^cwCU©^`f©�Gb3a`MqXSb3��NCXD�
	ÎRYb3a M�UV^c�Wb)UVP�UVdGb�a M�UVb3RTMWa$N?bqMW}�f�Ã�fTb+b�Ã¦ºg��pJÄTÄ
fTP8UVdxM�U�UV^c}�b���å�MOU�M��S^��Sb+wD}�PS}�b3wCU�POZzUT^`}�b���Ã�^cwÈã§Ä�^`f��Gb�¨xwGb+� NCXÃ¦ºg� ÓSÄ�����dJvGf3n(�GvGb�UVP
UVdGb2f�X�wG_�dGRTPWwG^`¡3MOUV^cPSw�PWZIã MWwy�%ã�åeZ=RVMW}�b3f2Ã�NCX�UTdGb2_+PSRTRYb3fT�?PSwG�y^`wG���GMW^`RYf'PWZE�G^cRTb+_+U�MOwG��a M�UVb3RTMWa
Z=RTPSwCUVfVÄ,U��®P�}�PS}�b3wCUVf�PWZ�UV^c}�bOn ��MWwG�4��åÇne_qMWw¹N?b��Gb�¨xwGb+�«MOU�MWwCX��D�?PS^`wCUq��ÊÀPWR�UVdyb�_�dGPSfTb+w
b+�Sb+wCU Ã �[�W�YÄ'UV^`}�bc��å4�Gb+�Qb+wG�GfzPSwGa�X�PSw%UVdGb)�Wb3a`P�_3^�U�X�PWZIUVdyb,}�P:��^`wG��Z=RTMW}�b�ã�å��
L$b�UmvGf©�Gb�¨xwGb,UVdGb)UV^c}�b��4^`w�UVdGb�¨y�gb3��Z=RVMW}�b2��^ M UVdGb��G^cfYUVMWwG_3bN�'�4�xMWfYfTb+��NCX�UVdGb�a`^c�SdCU©RVMqX

b3}�^cUTUTb3��Z=RTPS}�UVdGbz�QPW^`wCU®é M�U(UTdGbz�xMWRVMOa`a`b+axMWwG�Wa`bzêqë UVP�è.|kM��g^cf(^cw�fYPS}�bz�ya MWwGbO�\i~U®^`f�fTb+b3w�Z=RYPS}
Ê�^`�G��o+|�Ê�^`�G�ÒÁ�UTdxMOU�Z=PSR,MWwCX§b+�Wb3wCU%Ã �[�W�YÄmUVdGb��Gb+a MqX8UV^c}�b7�K�
	D^`f'�YvGf�U�M%�GRYP��Yb3_�UV^`PWwÎPWZ®UVdGb��S^��Sb+w
�G|��?PS^`wCU©PSw�UVdyb,_�dyPSfTb+w.a`^c�SdCU�RVMqXU�'�Ç�

�2NC��^`PSvyfTacXWnCUVdGbz�G^`fY�Ga MO_3b3}�b3wCU�PWZ�ã�å\PSRY^`�S^cw�æ?� ���K� �����:êqë ^`f��YvGf�U'M��GRYP��Yb3_�UV^`PWw�PWZQUVdGb©ac^`�SdCU
RVMqXU�'�4PSw%UVdGb)è.|�M��g^`f+�(ÍgPGnGZ=PSRzMWwCX��S^��Sb+w�_+PgPSRY�G^`wGMOUVb���MOUzM��W^c�Sb+w�UT^`}�bc��M �OMWa`vyb��?å4RTb3a`MOUV^��Sb
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Ê�^`�SvyRTb�Áy�d� ���c# ,8E8EFbPI 1Q(��213,�)+# )65N1�&-9�,8#%9 (K1Q,3�2Ez5K(��2;�9 � �2#CBL�a$')0)+(�B2,8#C�2169�13(W�2#OI�5i)+(K;��213,�)+# =@,8#-:
$ EFb B2,8#	GjZ[)+(*9 #-1 .D1Q(��2#OI�5i)+(K;��213,�)+#2�2XqRY��� \29 E^)0$ ,813"AI<MO�	$'9 B2,3�0G2(��2; $')+(K('9'I<M-)+#CB2,8#	G 1<) �s�2#CB��
I'&	, 5K1�ITX � &-9 �[:W$')0)+(�B2,8#C�21<9d,^Id1�&-9 �[:^M-)0I ,813,�)+#S)65N�dMO�2(K1Q,�$ E^9'e;�)+\0,8#	G � ,818& ��\29 E^)0$ ,813"U)65��a� �l�+�
,8#�ã 5K(��2;�9�RT" 18&-9d;�)+;�9 #-1H)65h1Q,8;�9 � X

UVP UVdGb�PSRY^`�S^cw%é)å®^cf
�?å� ��pDæh�� � po�K�g_3PWfÀêqë r Ã¦Áy��o
Ä

ÊÀPWR'MWwCX�b+�Wb3wCU�Ã��D��æd�K� �YÄ®M�RYb3a`MOUV^��Sbz_3P�PSRT�G^cwxMOUTbz^cf �?å �*ty�\i~U4}�bqMOwGf®UTdxMOU(UV^`}�b���åmÃ=fTb+b�Ã�ºg� ÓSÄ
MWwG�ÏÃ�º�� �CÄYÄ,^cf�UVdGb��GRTPS�?b3R�UT^`}�b�POZmã�å�ne^¦�ÒbO��UVdGb�UT^`}�b �W}�b3MWfTvGRYb3���8NCX¬}�b3MWwGf�PWZ"M �S}�P:��^`wG�
_3a`P�_�� �GnQ�©dyb3w8PSwGb�fT�?b3_+UVMOUVPWR2PSNGfYb3RY�Wb3f)UVdyb�a`^c�SdCUmfY�GdGb+RTb��©^cUTd.UVdyb�RVMW�y^`vGfc�K�z^`w.ã MWwG��^cw.UVdGb
fVMW}�b�UV^c}�bN�2M�}�P:�g^cwG��fT�?b3_�U�MOUTPSR)PSNGfYb3R��Sb3f�MWwGPOUVdGb+R)a`^`�WdJUmfT�Gdyb3RTb �©^�UVd�UVdyb�RTMW�G^cvGfh�'��å Ã�N?PWUVd
fT�GdGb+RTb+f®MORTb'UTRT^`�W�Sb3RYb3��PW¢�NCX�UTdGb4a M�UVb3RTMWa�a`^`�WdJU]N?bqMW}�f�ÄÇ�\ÊxPSR]UTdGb4b��Sb3wCUmÃ��[���YÄIUVdGb'_3PSRYRTb3fY�QPWwG�G^`wy�
}�PS}�b3wCU®PWZ�UT^`}�b ��å�^`f�UVdyb"UV^c}�b �S}�bqMOfTvGRYb3����NCX�}�bqMWwGf®PWZ�UTdGb��S}�P:��^`wG�,_3acPg_�� ��acPg_3MOUVb+��MOU(UVdGb
�QPS^cwCU �?å2PWZ4ã�å����zwGa`^c�Wb�PWZ �2^`w�ãÆnEUVdGb UT^`}�b���å2�Gb+¨GwGb3��Z=PSR,é)åm^`f)wGPOU�MOa`a�UTdGb�fVMW}�b Z=PSR2UVdGb
�QPS^cwCUVf�PSw%è�å~|�M��g^`f+�
i�wy�Gb3b+��n�Z=RYPS}ªÃ�ºg��pJÄ]PSwyb�_qMWw�fTb+b�UVdxMOU�UVdGb�^cwG^cUT^ MWaJ}�PS}�b+wCUePWZÀUV^c}�b2Ã��GRYP
�WPS�Wb+��NCX�UTdGb�a M�UVb3RTMWa

a`^`�WdJU'Z=RTPSwCUÇÄ'�yRTPS�xMO�CMOUVb+fzMWa`PSwy��è.|kM��g^cf4�©^cUVd�UTdGb)�Sb3acPg_+^cU�X�� 	\�

� 	m�	� �l�
�7�
	 � �l�+�
	j��� �e_+PSfxêqë ��� � �Sæ ��� ��� � � r Ã¦Áy� ºSÄ

ÍgPGn\Z=PSR�t ��æ � ��MWwCX¬U��®P�b��Sb+wJUTf�Ã���� �W�YÄ�MOwG�ÏÃ�� � �W�YÄ�dxMq�Sb%�G^�¢�b+RTb3wCU�UT^`}�b ��å�^`wÈã�åÇ��ÊxPSR
æ�¾ t�Ã¦êqë8¾ ¼_�Wº�Z=PSR)fT^c�Gb NQb3MW}�f�Ä"UVdyb��Wb3acPg_+^cU�X� 	D¾ � MWwG�§PSwGb�_3PW}�b+f2UVP�UVdGb�jzb+��UVPWw
UV^`}�bc��å�¾ �ÇnÀMWwG�%Z=PSRzæ ����Ã�êqë���tCÄ®UVdyb,�yRTPS�?b3R4UT^`}�b���å ��ty�
��dJvGf+nQZ=PSRzMWwCX�b+�Wb3wCU�Ã �[�W�YÄ�^`w�ã&UVdGb�_3PSRYRTb+fT�?PSwG�G^cwG��_+PgPWRT�G^cwxMOUVb+f"^cw.ã�å�MWRTb,fT^c}��ya`b)fTdy^cZ UVf

Ã�fTb+b�Ã�º�� ÓSÄ�MWwG��Ã¦Áy��o
ÄYÄ��\�IP�PSNyUVMW^`w�UVdyb"�OMWa`vyb3f'POZ$fTdG^�Z UVf+ngPSwybmfTdyPSvGa`��}�MW�Ob"f�X�}�}�b+UTRT^`_3MWaÀ�GRTP
�Yb3_�|
UV^`PWwGf©MWf©�Gb3fY_3RY^`N?b3��MWNQP:�WbW�
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ËÎb©dxMq�Sb©vGfYb3��UVdG^cfefYX�}�}�b+UTRYX�UVP2¨xwG��PSvyUeUTdGb©L$PSRTb+wCUV¡©_3P�PSRT�y^`wxMOUTb3f ���gMWwy�a���CZ=PWR�M�}�P:��^`wG�
Z=RVMW}�bW�]�]P)�Sb�UeUVdGb+}�nWPSwGb�dxMWf\UTP)¨xwG� UVdGb�_+RTPSfYfT^cwG�)�QPW^`wCU�é � PWZÀU��'P,�Qb+RT�?b3wG�y^`_3vya MWRYf\�GRTP��GvG_+^`wG�
UVdGb"�GRTP��Yb+_+UT^`PSwGf(Z=PSR®MWwCX�Ã �[�W�YÄ(b��Sb+wJU�Ã�fTb+b)Ê�^c�G� ÁSÄ�����dyb3w�UVdybma`b+wG�WUTd�PWZ�UTdGbm^cwCUVb3R��OMWaxZ=RTPS}7é � UVP
��_3PWRTRTb+fT�?PSwG�Gf©UVP ��� �

� � �×Ã � po�'�y_+PSfÀêqëyÄW�\fT^cw©êqë�� Ã�� pDæ?�YÄ���� o pDæ � ��� � � �?å� � � fT^cw©êqë� Ã¦Áy�ÒÁCÄ

MWwG�%UVdGb��G^cfYU�MOwG_3b2Z=RYPS}�é � UTP UVdGbd�'�4_3PWRTRTb+fT�?PSwG�Gf©UVP��'� � �
�'� � �×ÃQ�'� p��"_3PWfQêqëyÄW�\fY^`w©êqë�� Ã3�K� p��Qæ��2�+ÄW��� o pDæ � ��� � � �K��å���K� � fY^`w©êqër Ã¦Áy��pJÄ

i~U"^`fzfTb+b3w.Z=RYPS}0Ã¦Ág� ÁCÄ�MWwy�¹Ã¦Ág�ÒpJÄ4UVdGMOUm�yRT^`}�b3��MWwG��fTdG^�Z UVb+�._3P�PSRY�G^`wxM�UVb3fzMWRYb�RYb3a`MOUVb+��MWf©UVdGb
_3PSRYRTb3fY�QPWwG�G^`wy���GRYP��Yb3_�UV^`PWwGf3�zÅ'vyU"UVdGb��QPW^`wCU"é � nx�©dG^c_�d�^`f"MWa��4MqX�fm_+PSwGfT^c�Gb3RYb3�8MOf"UVdyb�PSRY^`�S^cw�POZ
UVdGb�}�P:��^`wG��Z=RTMW}�bOn��GP�b3fmwGPWU)_+PS^`wG_+^`�Gb�^`w�fY�xMW_3b �©^�UVd8é)åÇ��i~U)^`f)MOa`fTP�fTb3b+w�UTdxMOU2UTdGb�ac^`wGb�é � � �
^`f�wGPOU��xMWRVMOa`a`b+a®UTP�UVdGb�è.|�M��g^`f3�ÆÍgPGn�^cU�fTb3b+}�f�PSNC��^`PWvGf UVdxMOU�UVdGb%�GRY^`}�b3�Æ�OMWa`vyb3f _qMOwDwyPWU�NQb
RTb3�SMWRT�Gb+�.MOf©UTdGb�_3P�PSRT�y^`wxMOUTb3f�^cw�M }�P:�g^cwG��Z=RVMO}�bO�
��dyb��G^cfYUVMWwG_3b,N?b+U��®b3b3w�UVdGb,�S^c�Wb3w��QPW^`wCUVf �§MWwy� �'�,Ã��GMWfTdGb+�.ac^`wGb)^cw�Ê]^`�G�ÒÁCÄ'_qMOw�N?b��yb+¨xwGb+�

�g^`M�UVdGb��GRY^`}�b3�%MWwG��vGwG�yRT^`}�b3���OMWacvGb3f+�

� � �s� � � � n � � pÈº2�'� �"_3PSf?êqë���� � � � � n � � � n«º��K� � � � _+PSfÀêqë�� � � � � Ã¦Áy� ÓSÄ

PSRzMWfzM�fYvG}�PWZIU��'P�UVb3RY}�f+nxb3^�UVdGb+R"MOf � � � � � � n � �� Ã=UTP��Sb�Uz^cU©PSwGb,fTdyPSvGa`��MW�y����� � UVP�UVdyb,acb+Z U
�xMWRYU'PWZ'Ã¦Áy� ÓSÄ(MWwG�	��� � � UVP�^�UVf'RY^`�SdCU'�xMWRYU�Ä�ngPSR�MWf � � � p�� � � n � �
 Ã¦MW�y�	�d� � � � UVP�UTdGb2acb+Z U4�GMWRYU�POZ
Ã¦Áy� ÓSÄ4MWwG���?� � � � � UVP UTdGb�RT^`�WdJU©�GMWRYU�Ä�ny�©dGb+RTbO�
� � � ��� � � � p�� � ��� � � � � p�� � � �Ï¿ � Ã3� � � � å p�� � å Ä�� ¿A� o0� �����êqë �9oJ��� o pÈæ � �2� � � Ã¦Áy���CÄ

� �� ��º �]Ã��pN�K�g_3PSfQêqëxÄ ��º � � Ã � � ���'� � _3PSfÀêqëGÄ�� � �
 �*º2�K�+Ã3�K�Jp �"_3PSfQêqëGÄ�*º2�K� � ÃQ�'� � � � � _+PSfÀêqëxÄ�r
Ã¦Áy���SÄ

�Ib3RY} � � � ^`f��JwGP:�©wÐMWf�MWwD^`wC�OMWRT^`MWwCU�^`wCUVb+RY�OMWa¦� �2NC��^`PSvGfYacXWn'^cU�^cf�PWwGacXÈM§�xMWR�U�PWZmUTdGb�Z=vya`a
�G^`f�U�MWwG_+b � � MWwG�¹^`f�M.RTb+fTvGa�U PWZz_qMWwy_3b3aca`^cwG�.PWZ©U��®P§b3�JvxMWa'�OMWacvGb3f+neb3^�UVdGb+R � �� nePSR � �
 ^`wÆUTdGb�bÇ��|�GRTb+fTfT^cPSwGf�Z=PWR � � � � � � ���Ib3RY}�f � �� MWwy� � �
 }�MqX��G^c¢Qb3R�NCXÎfT^c�Sw���Ã�n�Ä�yÃ |�Ä�_3PSRYRTb+fT�?PSwG�Gf�UTP.UVdGb
�QPS^cwCU'é � a`P�_qMOUTb3��^`wGfY^`�Gb �OPSvyUTfT^`�yb©UTdGbz_3PSwGbz�Gb�¨xwGb3��NJX�UTdGbmMOwG�Sa`b©êqëQ�eÊxPSR(MWw�b��Sb+wJU)Ã��D��æ?�K�W�YÄ
UVb3RY} � �� ^`f,b3�JvxMWa�UVP�¡3b+RTPÈÃ�MWf �?åN� � � ��tCÄ�MWwG� � �
 ��º � � � n�fYP � � � � � � � � � � �%��dGb�L$PSRYb3wCUV¡
_3P�PSRT�G^cwxMOUTb�UVRTMWwGf�Z=PSRT}�MOUV^cPSwGf�Z=PSR�UTdG^`f��GMWRYUT^`_3vya MWR,_qMWfYb�dxMq�Sb%N?b3^`wy��vGfTvGMWa`a�XÎ�yRTb3fYb3wCUVb+�«^cw¬UVdGb
}�MWwJvxMOa`f,Ã�bO�Ò�y�E£ ��¥ ÄÇ�
ÊxRYPS} Ã�Áy���WÄ'PSwGb�_qMWw%¨xwG�¬Ã�vyfT^`wy��UTdGb�fTb+_3PSwG��Z=PSRT}�vGa MWbm^`wÎÃ¦Áy�ÒÁynxÁg�ÒpJÄYÄ

�D�×Ã �?å[n �'��åg_3PWfÀêqëxÄW�\fY^`w �?êqë�� Ã �?å n«æ?��åTÄ��GÃ�o�pDæ��'�2� ��ÄP� Ã¦Áy�ÒsCÄ

MWwG�
�'�� Ã3�K��å n �?åy_3PWfÀêqëxÄW�\fY^`w �?êqë�� Ã3�K��å n«æ �?å��2�+ÄW�GÃko pÈæ��K�2����Ä�� Ã¦Áy�ÒrCÄ

�©dG^`_�d�MWRTb)UTdGb�RTb+�Wb3RYfTb�UTRVMWwyfYZ=PSRY}�MOUT^`PSw�Z=RYPS}�UTdGb�}�P:��^`wy��Z=RTMW}�b2UVP UVdGb,RTb+fYU©Z=RVMO}�bO�e�]P�_�dGb3_��
UVdxMOU3nSPSwGb'_qMWw fYPSac�Wb�Ã�ºg� ÓSÄ�MOwG�%Ã¦Ág�co
ÄEZ=PSR ��MWwG�a�'�'Ã�PSwy_3b'UTdGb4Z�MW_+UTPSR'o0� �����êqë�^`f\^cwGfTb+RYUTb3� ^`wCUTPmUVdGb
NGRVMW_��Ob+UTf2UVdGb+w.UVdGb,UVb+RT}�fm^`w�NGRVMO_��Wb+UTf2N?b3_qMO}�b,UVdGb�a`b3wy�WUVdGf"PWZe�?b3RY�Qb+wG�G^`_+vGa MORTfz_3PSRYRTb3fY�QPWwG�G^`wy�
UVP UVdGb�}�b3wCUV^cPSwGb+���yRTP��Yb+_+UV^cPSw�fYX�}�}�b+UTRYXyÄ��
i~U�^cf�fYb3b3wÈZ=RTPW} Ã¦ºg� ÓWÄ�n`Ã¦Áy��o
Ä�MWwy�ÏÃ¦Áy�Òs�|kÁg� rCÄ)UVdxM�U�UVdGb��y^`RTb+_+U�MOwG�ÈRTb+�Wb3RYfTb�UVRTMWwGfYZ=PWRT}�MOUV^cPSwGf

MWRTb��G^�¢�b+RTb3wCU3�2UVdGb�a MOUYUVb+R2_3PSvya`�§wGPWU,N?b�PWNyU�MW^cwGb3�§NCX§_�dxMWwy�S^`wG��æªUVP�pmæ�����dG^`f�}�bqMWwyf�UTdxMOU
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PSwGb�MWa`RYbqMW�yX§�JwGP:�©f,UVdxMOU,UVdyb�Z=RTMW}�b�b3^�UVdGb+R�}�P:�Sb+f3n\PWR�wGPOUq��ËdGb+wÆ_�dxMWwy�S^`wG��æ PWw>pmæ PSwGb
fTdGPSvya`�ÆMOa`fTP%_�dGP�PSfYb�MWw¬MW�G�GRYPS�GRT^`MOUVb a`MOUVb+RVMWaeac^`�SdCU�N?bqMW} �y^`RTb+_+UT^`PSw§Z=PSR,M�}�P:�g^cwG��Z=RVMW}�bW��ÍgPGn
^cZ©ã�å�}�P:�Sb+f�NxMW_��C�'MWRT�¹UVP�è Ã�æ ��tSÄ,PSwGb�fTdGPWvGa`�Æ_�dGMWwG�Sb�UTdGb�fY^`�Sw¬^`wÐÃ¦ºg� ÓSÄ�n©Ã�Áy��o
Ä,MOwG�Æ^`w
wGPS}�^`wxMOUTPSRTf'PWZ]UTdGb�RTb��Sb3RYfTb,Z=PSRT}�vya MWb�Ã�Áy�Òs�|kÁy�ÒrCÄÇ�\��dJvGf3nxZ=PSR©MWwCX�U��®P�Z=RTMW}�b3f�PSwGb)Z=RTMW}�bm_qMWw�NQb
RTb3�SMWRT�Gb+�§MWf�M�}�P:�g^cwG��Z=RTMW}�b�MWwG�8PWUTdGb3R2PWwGb MWf2UTdGb�RTb+fYU)Z=RTMW}�b�MWwG����^`fYb��Sb+RTfTM�NCX�_�dyPgPSfY^`wG�
UVdGb©_3PWRTRTb+fT�?PSwG�G^cwG�,�G^`RYb3_+U®MWwy��a`MOUVb+RVMWaga`^`�WdJU�N?bqMO}�fzÃ�MW_3_+PSRT�G^cwG��UVP)UVdGb©�JwGP:�©w��xMORVMWaca`b3ayMWwG�Sacb3fVÄ��
Éä�QPWfTfT^cNGa`b��'MqX UTP¬RTb3MWa`^c¡3b�UVdyb3fTb.PS�G�?PSRYUTvGwG^cUT^`b+f�^cf�UTP¬}�MW�Wb�MWw«MWfTfYvG}��gUV^`PWw MWN?PSvyU�UVdGb

�GRTb+fTb3wy_3b)PWZ$}�MWwCX�a`^c�SdCU®f�UVRYbqMW}�f'PWZ$MWwCX��G^cRTb+_+UV^cPSwGf+� �2wGbm}�MqX�MWfTfYvG}�b2MWw�b�UVdGb+R3nywyPWU�M�RYb3f�UTZ=vGa
PSwGbWn�NGvgU�UVdGb�}�P:��^`wG��ac^`�SdCU�b+UVdyb3R3����dGb%MWNyfTb3wy_3b%PWZ©UVdGb�MWNGfTPWa`vyUTb�Z=RVMW}�b�UTb3fYUT^c¨xb+f vG�?PSwÆUVdGb
MWNGfTb+wG_3b'RTb3f�UTZ=vGa�b+UTdGb3R�MWwG���yPgb+f�wGPWU]_3PWwJUTRVMW�y^`_+UIUVdyb'�GRYb3fTb+wG_3b'PWZGUVdyb'}�P
��^cwG�"ac^`�SdCUIb+UTdGb3R+�\��dJvGf3n
UVdGb�RYb3a`MOUV^cPSw.N?b+U��®b3b+wÎfY�xMW_3b�MOwG��UV^c}�b�_3P�PSRT�G^cwxMOUTb3fmbÇ�g�GRTb+fTfTb+f,UTdGRTPWvG�Sd�UVdyb��xMWRTMWa`acb3a]MWwG�Sacb�PSR
UVdGRYPSvG�Sd�UVdGb2_+PSRTRYb3fY�QPSwy�G^`wG�,�Sb+a`P�_3^cUT^`b+f3��ÍgPyn�UTdG^`f(RTb+a MOUT^`PSw�^`f(�Sb3wyb3RVM�UVb3��NJX�UVdybm�GRYb3fTb+wG_3b)POZ�UVdGb
_3PSRYRTb3fY�QPWwG�G^`wy��ac^`�SdCU�f�UVRYbqMW}�fzMWwG���xMWRYUT^`_+a`b3f+�

� ����� �7·©´�´�³�µ8¸q±�Ú,²\Ü ²e³eÚ�±8Ù]ÝS´�³ � Ú,²e¸3´�± Ú�±8µ ¸q±�à,Ú�³�¸3Ú�±�²eÙ

LEb�U�vGfe_3PWwGfT^c�Gb3R\b��Sb+wJU2Ã��[���l�	�d��t �W�YÄ]^`w�ã Z=RTMW}�bO����dGb�a`MOUVb+RVMWa�a`^c�SdCU\N?bqMW}�^`f\RYbqMW_�dy^`wG�2è.|�M��g^`f
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The spectroscopy of Raman scattering of light now is a perspective direction of research of 

ultradisperse environments (powders, heterostructures, suspensions, biological environments, etc.). 

Feature of such mediums is the big relation of the area of a surface of a disperse phase to volume of 

substance. The transfer of light in the environment thus has features. 

• Presence of the big number of submicronic particles increases intensity of scattering of 

light, and the scattering albedo increases. 

• Dense packing of particles in the medium creates conditions for occurrence of a coherent 

component of scattering of light by particles of medium that creates local heterogeneity of radiation. 

• Presence of the developed surface can influence spectral structure of the secondary 

radiation, one of which component is Raman scattering.  

Feature of Raman scattering in homogeneous mediums is small value of signal in comparison 

with intensity of exciting radiation. In usually applied technique of registration of spectra of 

secondary radiation in the condensed medium exciting laser radiation focus near to a surface of 

medium. At enough high intensity of exciting radiation it leads to change of characteristics of 

substance: photodestruction, to the local warming up, the photoinduced phase transformations. In 

case of the disperse medium probably also sintering of particles of substance . 

For ultradisperse medium it is possible to expect increase of signal strength Raman scattering 

owing to diffusive character of carry of radiation in the medium. Thus focusing of radiation is not 

necessary. The technique of work developed by authors was based on use of the pulse-periodic 

laser, cavity a dish of teflon and optical waveguides. 

The scheme of experimental installation is presented on fig. 1. For excitation of a Raman 

scattering the laser on pairs of copper 1, generating radiation in visible area of a spectrum with 

lengths of waves 510,6 nanometers and 578,2 nanometers is used. Lasing was carried out in the 

form of short impulses by duration of 20 nanoseconds, the following with frequency of recurrence 

16 kHz with average power more than 1 W. Generation was carried out in a monochromatic mode 

( = 510,6 nanometers) for what the yellow line has been suppressed by filters. Duration of an 

impulse - 15 nanoseconds. Pulse power - 15 kW. Exciting radiation of the laser 1 by means of an 

optical waveguides 2 went inside ditches with the sample 3. Secondary radiation was included into 

other optical waveguides 2', directing it to an entrance crack of monochromator 6 by means of a 

lens 4. After the photo multiplier the impulse of a current acts in the block of processing of a signal 

11. The block of management 7 carries out discrete scanning on a spectrum with the set step of 

scanning and time of accumulation in each point. The computer 13 accumulates the digital 

information on a spectrum of secondary radiation and operates the step-by-step engine of 

monochromator, carrying out discrete turn diffraction lattices of this device. The target crack of 

monochromator has a photomultiplier 8 types. The Power unit 9 of photomultipliers provided the 

stabilized voltage up to U = 2,3 kV, necessary for amplification the electric impulses arising in the 

photomultiplier as a result of hit on the photocathode of photons, caused with secondary radiation in 

the researched sample. Sensitivity of device - 10
-15

 W. 

Special ditches have been developed for carrying out of researches (fig. 2). The principles stated 

in the patent application [1] are put in a basis of a design. In the case dish 3 the cylindrical cavity 7, 

being by working volume and filled by researched substance is cut out. From above and from below 

to the case dish fasten washers 2 and 5 into which 1 optical waveguide having diameter of a fiber 50 

- 100 microns are inserted entrance 6 and the day off. The case and washers are executed from 

Teflon. Between the case and the bottom washer the lining 4 of teflon a film by thickness 10 - 20 
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microns is installed. This lining well passing exciting radiation, separates an end face of an entrance 

optical path from researched substance and pressurize to a ditch at removal of an entrance optical 

waveguide. 

 
Fig. 1. The block diagram of installation for research of volumetric secondary radiation in the condensed 

environments at импульсно-periodic laser excitation (the scheme “ on a gleam ”): 1 - the laser; 2, 2' - 

opticals waveguide; 3 - a dish with the analyzed sample; 4 - a lens; 5 - the filter; 6 - a monochromator; 7 - 

the block of management of a monochromator; 8 - the photomultiplier; 9 - a power unit of the 

photomultiplier; 10 - a strobe-shaper; 11 - the block of processing of a signal; 12 - a line of a delay; 13 - a 

computer; 14 - an optical fibre 

 

 
 

Fig. 2. The scheme dish: 1, 6 - entrance and target opticals waveguides; 2, 5 - washers; 3 - the case 

dish; 4 - a film lining; 7 - working volume of dish 

 

In experimental installation as the case at once a several ditch was used fluoroplastic a sheet in 

which cylindrical apertures have been drilled. It has allowed to prepare for research at once a 

multiples of substances, and replacement a dish during measurements was made only by 

rearrangement of optical waveguide that has essentially simplified researches. 
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The design ditches enables to research samples as in the ultradisperse form, so in liquid and firm 

forms. 

In the work have been researched a line of organic and inorganic substances in the ultradisperse 

form. 

Results of measurements are presented on fig. 3 - 7.  

Application developed a ditch has allowed to receive a signal of secondary radiation, 

comparable on intensity with exciting radiation, especially for organic substances. 

From spectra of a Raman scattering of salts potassium on fig. 3, 4 it is possible to determine 

spectral shift of a line of a Raman scattering: 740 cm
-1

 and 846 cm
-1

 for potassium iodate and 

potassium bichromate accordingly. 

The common component for the researched organic substances: stilbene, PPO, and POPOP - the 

six-nuclear cyclic group is. Stilbene and PPO incorporate on two groups, POPOP - three groups. 

Cyclic groups in PPO and POPOP are connected accordingly through one and two C3NO groups, 

and in stilbene - through two CH groups connected by dangling bond.  

 
Fig. 3. A spectrum of secondary radiation K2CrO4 

 
Fig. 4. A spectrum of secondary radiation KIO3  
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Fig. 5.  A spectrum of secondary radiation of a stilbene (1,2-diphenylethylene С6Н5СН = СНС6Н5) 

 
Fig. 6. A spectrum of secondary radiation POPOP 
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Fig. 7. A spectrum of secondary radiation PPO 

On fig. 8 the site of a spectrum of a Raman scattering in a range 900 - 1650 cm
-1

 for all three 

substances. Position of the "main" maximum shifted from an exciting line on the greatest distance is 

well visible, that, in process of increase in number of cyclic groups moves in area of smaller 

frequencies, and its form out of one-topmost becomes two-topmost. 

Poorly expressed at a stilbene and well appreciable at PPO the line of 1416 cm
-1

 is not 

visible in spectrum POPOP. 

Shift in area of low frequencies and other lines is observed: 1148 сm
-1

 at a stilbene, 1097 сm
-

1
 at PPO, 1011 сm

-1
 at POPOP. 

The line of 959 сm
-1

 well appreciable at a stilbene and PPO, disappears in spectrum POPOP 

(from fig. 8с it is visible, that there a minimum), but at POPOP there is a line of 924 сm
-1

. 

In experiment it has been noticed, that the degree of change of the form of an exciting line 

depends on a design dish and from quantity of substance in a dish. Whether is this phenomenon 

lack of a design or display of features of the ultradisperse form of substance it is necessary to 

specify in the further researches. 

Carried out researches have shown, use special resonator a dish allows to receive a high level 

of intensity of secondary radiation in the substances which are being the ultradisperse form. It 

allows to increase volume and reliability of the information on researched substances. 

 

 

 
a) 

 

 

 
b) 
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c) 

 
Fig. 8. A site of a spectrum 900 - 1650 cm

-1
 for a stilbene (a), PPO (b) and POPOP (c). Numbers near 

arrows - spectral shift by the noted arrow of a line. 
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Introduction 
The opportunity of existence of negative masses is object of a discussion in the relativistic theory. In 

the article the requirements of origin of negative mass of quantum in globular photon crystal is 

investigated. The globular photon crystal represent new unique objects interesting as to basic 

researches, and for the practical appendices [1,2]. In the given article as objects of investigations the 

simulated opals representing one of types of globular photon crystal were utilized. The simulated 

opals are built from identical spherical particles (globule) silica packed by the way of a cubic lattice. 

The size globule can receive values in a range 200 - 400 nm. In the given article the optical behavior 

of globular photon crystal is analyzed on the basis of usage of analytical expressions for the law of a 

dispersion of photon bands. 

 

1. Laws of a dispersion of photon bands in globular crystal. 
As displays the theoretical analysis, reference property of globular photon crystal is the availability 

in them of several dispersion branches щj(k) (j=1,2, …) in a spectrum of electromagnetic waves. 

The precise calculation of the laws of a dispersion щj(k)  of photon bands in a globular crystal is 

very difficult. For approximation of a view of dispersion curves it is possible to utilize that fact, that 

far from critical points of a Brillouin zone the group velocity dщ/dk of electromagnetic waves 

should be comparable to speed of light in vacuum, and near to critical points the derivative dщ/dk 

should aim at null. In this connection we selected following approximation for the first three photon 

branches: 
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Here with с - constant, close to speed of light in vacuum, and а - diameter globule (lattice 

constant), щ0 – value of a circular frequency at center of a Brillouin zone for the second and third 

branches. 

In a fig. 1 the obtained theoretical dependence of frequency on a wave vector for following 

values of parameters is showed: щ0  = 5,39*10
15

 1/с, and а = 1,68х10
-7

 m. The lowermost diagram 

starting from null, corresponds to the first branch of oscillations. The diagrams of the second and 

third branch start with value щ=щ0. To the second branch there corresponds a curve, directional 

downwards; the upper curve corresponds to the third branch. 
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Fig. 1. A theoretical view of the law of a dispersion of a globular photon crystal for three lower branches 

(1-3); on an axis of ordinates the circular frequency щ in rad /s with is postponed.; on an abscissa axis - 

wave vector k in м
-1

. 

 

2. Dispersion of a reflectivity. 
The reflectivity R (щ) from a surface of a photon crystal was calculated under the known formula: 

2

0

0

kk

kk
R

+

−
= .        (4) 

Here k0= щ/c - wave vector in vacuum, and k - a wave vector in medium calculated from 

relations (1-3). 

Accordingly, the transmittance T (щ) was from a relation: 
2
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−=  .       (5) 

We explored angular dependencies of spectrums of reflection for two types of simulated opals 

experimentally. 

The Fig. 2 and 3 is illustrated by the obtained spectral dependencies of intensity of reflection at 

normal incidence and at incidence 45 degrees on a surface of an opal. As it is visible from these 

figures, there is an essential distinction of standings of a maximum of intensity in spectrums of 

reflection at normal incidence of a beam on a surface and at incidence 45 degrees and subsequent 

mirroring. On the basis of the formulas for a reflectivity the relevant dependencies of a reflectivity 

under the formula (4) by matching of reference parameters were calculated so that to supply 

conformity to theoretical and experimental dependence. In a fig. 4 the obtained theoretical 

dependencies for following parameters are given: щ0 = 5,39х10
15

1/sec, and а= 1,68х10
-7

 m. As it is 

visible from comparing experimental and theoretical dependencies, the qualitative consent of the 

theory with experiment is watched; difference in the shape of apparent curves at the same time takes 

place. 

 

3. Dispersion of a group velocity and effective mass of a quantum in a globular 

photon crystal 
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The group velocity depends on a wave vector as follows: 

dk

d
v

ω
= ,          (6) 

Where щ(k) - dispersion dependence of one of branches. For the first branch, allowing (1) and 

(6), we gain: 

)2/sin(kacv = .           (7) 

For the second branch, allowing (2) and (6), we discover: 
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For the third branch, allowing (3) and (6), we gain: 
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Fig. 2. Specter of reflection of an opal at normal incidence. 
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Fig. 3. Specter of reflection at incidence and reflection of a beam bevel way 45 degrees. 
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Fig. 4. Theoretical dependence of a reflectivity R from a wave length L (м). 

 

In a fig. 5 the calculated dependence of a group velocity on a wave vector is showed at 

following parameters щ0 = 5,39х10
15

  1/sec, and а= 1,68х10
-7

 m. The upper diagram (full curve) 

corresponds to the first branch. From this figure it is visible, that the sign of a group velocity 

dk

d
v

ω
=  everywhere is plus. The dashed line corresponds to the third branch; for it the velocity also 

is plus. The dot line corresponds to the second branch; to it there corresponds a negative sign of a 

group velocity. 

  
Fig. 5. Dependence of a group velocity v (m/sec) from a wave vector k (м

-1
). 

 

The calculation of dependence of effective mass from a wave vector was carried out on the 

basis of the known formula [4]: 
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2kd
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Where h - Plank constant. For the first branch, allowing relations (1) and (10) is gained the 

following formula: 

)2/sin(kaca

h
m

π
−= .       (11) 

The relevant dependence is showed in a fig. 6а in terms of h. 

  
Fig. 6а. Dependence of effective mass m/ h (kg / joule sec) from a wave vector k (м

-1
) for the first dispersion 

branch (see fig. 2). 

Accordingly, for the second branch is gained: 

)2/(sin)2/(cos)2/(sin)2/(cos4(2

))2/(sin(4
222222222

2222

0

kaackaackakac

kacaha
m

+−

−
−=
π

ω
. (12) 

 

The obtained dependence is illustrated a fig. 6b. 

 
Fig. 6b. Dependence of effective mass m/ h (kg / joule sec) from a wave vector k (м

-1
) for the second 

dispersion branch (see fig. 2). 
 

For the third branch takes place: 
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The obtained dependence is showed in a fig. 6c. 

 
Fig. 6c. Dependence of effective mass m/ h (kg / joule sec) from a wave vector k (м

-1
) for the third 

dispersion branch (see fig. 2). 

4. Dispersion dependence of an effective index of refraction of a crystal 
For a flat simple harmonic wave the direction of a phase velocity vph= (щ/k)k/k coincides a 

direction of a wave vector k. When the group velocity is negative, the directions of vector of a 

group velocity v and wave vector k are antiparallel. On the other hand, the directions of vectors v 

and with (with c - velocity vector of a wave in vacuum) for normal incidence are identical. It means, 

that group and phase velocity thus are antiparallel. For an index of refraction in case of normal 

incidence takes place: 

vph= (щ/k)k/k=с/n.       (14) 

Thus, if the sign of a group velocity is negative, the effective index of refraction too becomes 

negative. 

In a fig. 7а is showed calculated according to (14) dependencies of an index of refraction on 

frequency for the first branch. It is visible, that in this case at small щ and k the index of refraction is 

plus and is close to unity. 

 
Fig. 7а. Dependence of an index of refraction on frequency for the first branch; an abscissa axis is the 

circular frequency щ (rad / sec). 
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In a fig. 7b the dependence of an effective index of refraction on frequency for the second 

branch is showed. It is visible, that the index of refraction for all branch is negative. 

  
Fig. 7b. Dependence of an effective index of refraction on frequency for the first branch; an abscissa axis is 

the circular frequency щ(rad / sec). 

In a fig. 7c the dependence of an index of refraction on frequency for the third branch is 

showed. From this figure it is visible, that the index of refraction for all this branch is to positive 

and smaller unity. 

  
Fig. 7c. Dependence of an index of refraction on frequency for the third branch; an abscissa axis is the 

circular frequency щ (rad / sec). 

 

In a fig. 7d the dependence of an index of refraction on frequency for all three branches is 

showed. It is visible, that the graph of an index of refraction from frequency on the second branch 

transfers without a disrupter in the diagram for the third branch. Between the graphs for the first and 

second branch the discontinuity is seen. 
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Fig. 7d. Dependence of an index of refraction on frequency for all three branches; an abscissa axis is the 

circular frequency щ(rad / sec). 

 

5. Conclusion. 
The opportunity of existence of negative masses is object of a discussion in the relativistic theory. In 

the article the requirements of origin of negative mass of quantum in globular photon crystal is 

investigated.  

Thus, in the present article on the basis of a prime model of the laws of a dispersion of photon 

bands of a photon crystal such as an opal the dispersion dependencies of a reflectivity, group 

velocity, effective mass and index of refraction are calculated. The theoretical dependence of a 

reflectivity is as a whole close to experimental, though has other shape. For the first and third 

branches the group velocity is positive, and for second - negative; and effective mass of quantum for 

the first branch - is negative. For the second and third branches effective mass of quantum can be 

both positive, and negative and has a discontinuity at variation of a sign. The effective index of 

refraction for the first branch is to positive and major unity. For the second branch the effective 

index of refraction is negative. For the third branch he is to positive and smaller unity. 

The article opens opportunities for installation of a microstructure of globular photon crystal on 

the basis of a view of their spectrums of reflection and transmission in visible range of a spectrum. 

As a whole it is possible to draw a conclusion that usage of dispersion curves by the way (1-3) 

allows satisfactorily to describe dispersion dependencies of an index of refraction on frequency and 

spectral dependence of a reflectivity on a surface of a photon crystal. 

 
Fig. 8. A diagrammatical view « lenses Veselago» on the basis of a photon crystal. 

 

In area, where index of refraction is negative, on the basis of photon crystal is possible making 

known « lens Veselago » in visible ranges of a spectrum (see fig. 8). In areas, where the index of 



296 

refraction modulus is less than unity (for the second and third branches), the effect of complete 

exterior reflection from a surface of a photon crystal (see fig. 9) is possible. 

 

 
 

Fig. 9. Effect of complete exterior reflection from a 

surface of a photon crystal. 

 

 
Fig. 10. An optical waveguide on the basis of a 

photon crystal. 

 

 

On the basis of such effect the optical waveguide such as tubes can be generated, on an interior 

surface which one marks a material by the way globular photon crystal (for example, opal). Thus 

light owes completely is reflected from an interior surface of a tube, as the relevant index of 

refraction is less than unity (see fig. 10). 

For area of a spectrum, where dn/dω (aims at infinity, i.e. near to a discontinuity, there is an 

opportunity to produce so-called «superprism» described anomalously by a high dispersion. 

The operation is supported RFFI (grants № 02-02-16221, № 04-02-16237 and №05-02-16205). 
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In this article, we consider changes of the sizes of rigid bodies uniformly moving along some
direction. The macroscopic change of the sizes of the body is caused by displacement of the points
of equilibrium of the ions of the crystalline lattice due to change of the convection potential. Some
applications of the results, we found, are considered in an interpretation of the Michelson-Morley
experiment. The effect of the contraction due to the convection potentential and relativistic Doppler
shift can be used, in principle, to detect a motion of some space apparatus with respect to the cosmic
background radiation frame.

PACS numbers: 03.50.-z, 03.50.De, 03.30.+p

I. INTRODUCTION

When FitzGerald and then Lorentz suggested a hypothesis on contraction of the moving bodies to
explain null results of the Michelson-Morley (MM) experiment, they could not give any argument in
favor of their suggestion. Later in attempts to substantiate this hypothesis, Lorentz argued [1], that “if
it is assumed that the molecular forces holding Michelsons interferometer together are affected by the
Earths motion through the ether in the same way as Coulomb-forces are affected, the interferometer
will experience a contraction of the kind needed to explain the negative result of the Michelson-Morley
experiment”. On level of scientific knowledge of the end of XX century, it was impossible to explain an
origin of these forces but now we know the laws which the atoms forming the solid state obey. So it would
be worthwhile to verify Lorentz’s hypothesis having known what factors are responsible for forming the
structure of the material of which the arms of the Michelson interferometer are made.
Our approach to this problem will be linked neither with the special relativity nor Lorentz’s absolute

ether theory because it is based only on the Maxwell equations and some results of the solid state physics.
In frame of this approach, we will show that while considering the relativistic contraction of the moving
bodies, for example in the MM experiment, one factor is omitted. This factor is the influence of the
convection potential created by the ions in the lattice of uniformly moving crystal [11] to the surrounding
ions which comes to re-distribution of the ions of the lattice to other points of electrostatic equilibrium. So
total contraction of the moving body must be stronger than it is predicted by both the special relativity [2]
and Lorentz’s concept of the ether [3, 4].
This paper is arranged as follows. In Sec. II, we consider how the conditions of electrostatic equilibrium

of the ions in the lattice of some crystal body change if this body begins to move uniformly. Also we
calculate the distances between new points of equilibrium where the ions are located and how it results
to changing the sizes of the whole body. In Sec. III we consider an application of the results of Sec. II to
the interpretation of the measurement data of the MM experiment. In Sec. IV we consider the numerical
calculation of the potential of an ionic crystal lattice. Sec. V contains some conclusions and description of
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†Electronic address: webers@fh-furtwangen.de
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2

a possibility to detect a motion of some space apparatus with respect to the cosmic background radiation
frame.

II. CONTRACTION OF THE MOVING BODIES DUE TO THE CONVECTION
POTENTIAL

Let us consider a motion of some rigid body made of ionic crystal (for example, it can be a NaCl
crystal). Our choice of the material of the body is caused by the intention to reduce analysis of behavior
of the solid state to analysis of the electrostatic forces providing equilibrium of the crystalline lattice.
Actually, one can calculate the change of the points of equilibrium of ions of the lattice of some perfect
metal. In this case, one should consider a distribution of the electrons of conductivity in the lattice. The
dominant factor determining the points of location of the ions in the sites of the lattice is the electrostatic
repulsion force between the ions. This force is shielded by the spatial negative charge due to electrons of
conductivity. So even in this case, the task can be reduced to an electrostatic one. It can be established
from consideration of the Hamiltonian of the crystal (Ch. 1.3 of [5], Eq. (1.3.1))

H =
1

2

∑
l

p2
l

m
+ U(R1,R2, ...Rl, ...) , (1)

where the potential energy of the crystal is a function of distances R1,R2, ...Rl, ... between the atoms
of the lattic only ((Eq. 1.3.3) of [5]). So in the equilibrium configuration, when the atoms are located
exactly in the sites of the lattice, we have

∂U

∂rl
= 0 ; r1 = r2 = ... = rN = 0 (2)

for all rl = Rl − la, a is the vector of elementary cell of the lattice. In the solid state problems, while
studying the dynamical properties of the crystal, the potential energy is represented as

U(r1, r2, ...rl, ...) = U0 +
∑
l,l′

rlrl′
∂2U

∂rl∂rl′
. (3)

Additive constant in the energy U0 is not essential in studying the dynamical properties of the crystal so
it is omitted in further consideration of the solid state problems. But we will be interested just in this
additive constant, i.e. how it changes if the forces acting on the atoms change too. Obviously, U0 obeys
Eq. (2) and we shall analyze this equation below.
When each ion moves concordantly with the whole lattice we are able to consider the fields of one

elementary cell. For NaCl, the lattice is of the cubic type and it is sufficient to consider how the points
of equilibrium change in longitudinal and transversal direction to the motion of the body (we suggest
that one axis of symmetry of the lattice is oriented in direction of motion so two other axes are directed
transversally). For uniformly moving charges, the EM fields created by these charges are stationary, which
means that they become to be static in the co-moving frame. We find the magnitude of the interaction
force between the ions [6],

F = e (E + [v ×B]) , (4)

where v is the velocity of uniform motion of the lattice, E and B the electric and magnetic fields created
by one ion. The values of the EM fields can be found from the expressions for the Liennard-Wiechert
potentials written in the ’present time’ coordinates. The force is given by

F = e2
[
−∇

(
1

s

)
+ (v ·∇)

v

c2s
+

v

c2
×
(
∇× v

s

)]
, (5)

s =
√
(x− x′2) + (1− v2/c2) [(y − y′)2 + (z − z′)2] .
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3

Here, x, y, z and x′, y′, z′ are the coordinates of the interacting ions, and x-axis is assumed to be parallel
to v, without restriction of generality. Further, we assume that charges do not change with the velocity
v. Neglecting the sign, Eq. (5) can be presented as

F = e2∇
(
1− v2/c2

s

)
= e2∇Ψ ,

Ψ =
1− v2/c2√

(x− x′2) + (1− v2/c2) [(y − y′)2 + (z − z′)2]
, (6)

where the scalar function Ψ is called the convection potential. So we see from Eq. (6) that for the system
of the moving charges, the electrostatic potential is changed to the convection potential. Because the
electrostatic potential determines the points of location of the ions where they are being in equilibrium
when the lattice is at rest, we can suggest that if the lattice moves, just the convection potential must
determine the points of equilibrium of ions of the moving lattice. It follows from Eq. (6) that if the velocity
of motion of the lattice changes, the magnitude of the convection potential changes too. Therefore, the
points of locations of the ions must change too. Below we find how new points of equilibrium depend on
the velocity.
It is reasonable to assume that if the magnitude of the potential providing the equilibrium of the lattice

changes, the ions tend to displace in such a way that changing of the potential is compensate for the total
energy conserves.
Let us assume that when the lattice is being at rest, the distance between two neighbor ions is d. The

energy of the lattice is the potential electrostatic energy of the ions

Wrest = −
∞∑

lm, n=0

(−1)l+m+ne2√
(ld)2 + (md)2 + (nd)2

= −e2

d

∞∑
l,m, n=0

(−1)l+m+n

√
l2 +m2 + n2

, (7)

where summation over l corresponds to summation of the ions along the x axis, summation over m does
along the y axis and summation over n does along the z axis; the term l = m = n = 0 is excluded.
When the lattice moves, the electrostatic energy of the ions changes because of changing the convection

potential with velocity as

Wmov = −
∞∑

l,m, n=0

(−1)l+m+n(1− v2/c2)e2√
(ld)2 + (1− v2/c2) [(md)2 + (nd)2]

, (8)

The terms 1 − v2/c2 in the numerator and in the denominator, respectively, of Eq. (8) arise from the
finite speed c of propagation of electromagnetic forces. The case of two moving charges (charge 1 and
charge 2) with their distance perpendicular to speed v is easier to explain (see also Fig. 1b). If md is such
a perpendicular distance, then the traveling distance of the electromagnetic force in the resting frame is
enlarged in anology to the hypotenuse of an right angle triangle with adjacent side vt and opposite side
ct by the factor

√
1 + v2/c2, or 1/

√
1 + v2/c2 if we are considering both terms, in the denominator, and

in the numerator, respectively. Traveling time for the distance md is t.
To explain the parallel case one needs the assumption that action and reaction of the electromagnetic

force need twice the distance - from charge 1 to charge 2 and back. If ld is the parallel distance we find as
traveling time t1 of the action from charge 1 to charge 2 the amount t1 = (ld+ vt1)/c or t1 = ld/(c− v).
The traveling time backwards, t2, is t2 = (ld − vt2)/c or t2 = ld/(c + v). The averaged simple traveling
distance is then c(t1 + t2)/2 = ld/(1− v2/c2), i.e., exactly the factor of the distance ld in Eq. (8).
Since there is no internal motion of the ions the total internal energy is equal to the electrostatic

energy. Comparing Eq. (7) to Eq. (8) shows that the total internal energy of the lattice increases with
the velocity. It means that the ions are not located at the points of equilibrium and it is necessary to
find new points of location of the ions in such a way that the magnitude of Wmov will be equal to the
value of Wrest. To do it, we consider partial sums over m, n and l separately. We have for Eq. (7) and
(8) at m = n = 0

W
∥
rest = −e2

d

∞∑
l=0

(−1)l

l
; W ∥

mov = −e2

d

∞∑
l=0

(−1)l(1− v2/c2)

l
. (9)

Никита
Typewritten Text
299



4

The total energy does not change if the magnitudes of W
||
rest and W

||
mov are equal. Because the only

parameter, which can change in Eq. (9), is the interatomic distance d, the equivalence of these quantities
is provided by changing the interatomic distance (in x direction, length contraction due to von Weber [7]
as

d
∥
rest =

d
∥
mov

1− v2/c2
=⇒ d ∥

mov =
(
1− v2/c2

)
d
∥
rest . (10)

Respectively, analysis of partial sums at l = 0 gives

W⊥
rest = −e2

d

∞∑
m,n=0

(−1)m+n

√
m2 + n2

; W⊥
mov = −e2

d

∞∑
m,n,=0

(−1)m+n
√
1− v2/c2√

m2 + n2
. (11)

and the interatomic distances which are transversal to the motion direction for the lattice at rest and the
moving lattice are connected (due to cross contraction) as

d⊥
rest =

d⊥
mov√

1− v2/c2
=⇒ d⊥

mov =
√

1− v2/c2d⊥
rest . (12)

Using conditions (10) and (12), one can evaluate changing the distance between two arbitrary ions

separated by l, m and n sites (d
∥
rest = d⊥

rest = d)

dmov(l,m, n) =

√
l2
(
d
∥
mov

)2

+ [m2 + n2] (d⊥
mov)

2
=

=

√
(1− v2/c2)

2
(ld)2 + (1− v2/c2) [(md)2 + (nd)2] . (13)

Using Eq. (13), we calculate the electrostatic energy of the moving lattice taking into account that the
transversal component of the interatomic distance should enter into the formula with the factor (1−v2/c2)

Wmov = −
∞∑

l,m, n=0

(−1)l+m+n(1− v2/c2)e2√[
d
∥
mov(l,m, n)

]2
+ (1− v2/c2) [d⊥

mov(l,m, n)]
2

=

−
∞∑

l,m, n=0

(−1)l+m+n(1− v2/c2)e2√
(1− v2/c2)

2
(ld)2 + (1− v2/c2)(1− v2/c2) [(md)2 + (nd)2]

=

− e2

d

∞∑
l,m, n=0

(−1)l+m+n

√
l2 +m2 + n2

= Wrest . (14)

So we find that if the conditions (10) and (12) are fulfilled, the total electrostatic energy of the lattice
does not change with velocity (we consider the steady-state regimes of motion only).
This is an important result for the analysis of the electrodynamics of the moving bodies. It is easily to

find that any other kinds of changing the interatomic distances of the lattice do not provide the minimum
of the electrostatic energy when the body is being in motion. For example, if we assume that only
relativistic contraction of the bodies occurs, i.e. the interatomic distance changes only in direction of
motion,

d ∥
mov =

√
1− v2/c2d

∥
rest ; d⊥

mov = d⊥
rest , (15)

we have for Wmov taking into account Eqs. (8) and (15)

Wmov = − e2

drelrest

∞∑
l,m, n=0

(−1)l+m+n(1− v2/c2)√
(1− v2/c2) (l)2 + (1− v2/c2) [m2 + n2]

=

−
√

1− v2/c2e2

drelrest

∞∑
l,m, n=0

(−1)l+m+n

√
l2 +m2 + n2

=
√
1− v2/c2Wrest , (16)
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and the electrostatic energy of the lattice does not reach its minimum.
If the interatomic distances change in accordance to Eqs. (10) and (12), the whole sizes of the moving

body must change as

L ∥
mov =

(
1− v2/c2

)
L

∥
rest ; L⊥

mov =
√
1− v2/c2L⊥

rest . (17)

We should note that the relativistic transformations of the fields are included in our calculations (the
expression for the convection potential) but it follows from more sophisticated consideration of the change
of the electrostatic energy, and, therefore, the conditions for equilibrium of the ions forming lattice demand
that some additional contraction of the moving bodies must occur.

III. APPLICATION OF THE ABOVE RESULTS TO INTERPRETATION OF THE
MICHELSON-MORLEY EXPERIMENT

Now we show that the contraction of the moving body described by Eq. (17) can be used for explanation
of the null results of the Michelson-Morley (MM) experiments [8, 9] (the scheme of this experiment is
give in Fig. 1).

FIG. 1: The scheme of the MM experiment. (a) the interferometer is being at rest with respect to the cosmic
background radiation (CBR) frame, and (b) the interferometer moves with the velocity v with respect to this
frame. AB and AC are the arms of the interferometer, A, B and C the mirrors, s the source of the light.

First, we note that the optical paths of the light beam in the Michelson interferometer are determined
by the lengths of the arms AB and AC supporting the mirrors. The arms are made of the solid
state material and, therefore, they should contract, while the frame with the interferometer moves, in
accordance to Eq. (17).
We denote the inertial frame in which the Michelson interferometer moves (with the Earth) as the

CBR frame and the inertial frame where the interferometer is being at rest as the laboratory frame. Let

us assume that the length of the path AB for the Michelson interferometer being at rest is L
∥
rest [12] and
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the length of the path AC is L⊥
rest. Then the optical paths are

P
∥
rest = 2L

∥
rest ; P ⊥

rest = 2L⊥
rest , (18)

and the diference in the optical paths is

∆Prest = P
∥
rest − P ⊥

rest = 2[L
∥
rest − L⊥

rest] . (19)

so a difference in the traveling times of the light beam in this frame is

∆trest =
2[L

∥
rest − L⊥

rest]

c
(20)

Now we go to the CBR frame where the interferometer moves. When the arm L∥ is oriented in parallel
to the light beam A → B → A, the traveling time of the light is

tABA = tAB + tBA =
L

∥
mov

c− v
+

L
∥
mov

c+ v
=

2cL
∥
mov

c2 − v2
=

2c(1− v2/c2)L
∥
rest

c2 − v2
=

2L
∥
rest

c
. (21)

When the arm L⊥ is oriented transversally to direction of motion, the traveling time of the light is

tACA = tAC + tCA =
2L⊥

mov√
c2 − v2

=
2
√
1− v2/c2L⊥

rest√
c2 − v2

=
2L⊥

rest

c
. (22)

so the difference in the traveling times of the light beam in the laboratory frame is

∆tmov = tABA − tACA =
2[L

∥
rest − L⊥

rest]

c
(23)

Because the difference in the optical paths is

∆Pmov = c∆tmov = [L
∥
rest − L⊥

rest] , (24)

we see from Eqs. (19) and (24) that the type of contraction of the moving body (17) provides conservation
of the optical paths of the light beam in the Michelson interferometer independently of the frame. Because
just the difference in the optical paths determines the interference pattern distribution, we conclude that
this type of contraction explains the null result of the MM experiment.

IV. THE NUMERICAL CALCULATION OF THE POTENTIAL OF AN IONIC CRYSTAL
LATTICE

When the lattice moves, the electrostatic energy of the ions changes because of changing the convection
potential with arising the velocity as

Wmov = −
∞∑

l,m, n=0

(1− v2/c2)e2(−1)l+m+n√
(ld)2 + (1− v2/c2) [(md)2 + (nd)2]

. (25)

Since there is no internal motion of the ions the total internal energy is equal to the electrostatic energy.
Comparing Eq. (7) to Eq. (25) shows that the total internal energy of the lattice arises with the velocity.
It means that the ions are not located at the points of equilibrium and it is necessary to find new points
of location of the ions in such a way that the magnitude of Wmov will be equal to the value of Wrest.
The volume of the two possible space cells of our NaCl type crystal is (2d)3. The nearest distance of

two ions of the same kind is 2d. One space cell consists of 8 ions of the first kind positioned in the corners
of a cube, positive e.g., and one central ion of the other kind, negative then. The second possible space
cell is built similarly, but the ions changed.
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β P1/P0 P2/P0 P3/P0

0.000 1.0000000 1.0000000 1.0000000
0.001 0.9999993 0.9999995 1.0000000
0.002 0.9999973 0.9999980 1.0000000
0.003 0.9999940 0.9999955 1.0000000
0.004 0.9999893 0.9999920 1.0000000
0.005 0.9999833 0.9999875 1.0000000
0.006 0.9999760 0.9999820 1.0000000

TABLE I: Relative potentials of the central ion in an ionic crystal lattice for different β = (v/c) and different
contraction formulas.

We consider spherical shells surrounding a central ion. The number N(r) of ions in a shell with
thickness dr and radius r is proportional to 4πr2dr. With greater r we can consider the number N(r) as
statistically defined. With Bernoulli we assume a statistical error of N−1/2. Since positive and negative
ions are mixed up in a shell the number of positive acting ions is [N+ − N−] with a statistical error
of about (2N+)

−1/2 or N0r. The constant factor N0 contains the number of ions per spatial unit, and
additionally contains the constants 4πdr. The acting potential of the [N+−N−] ions on the central ion is
then statistically averaged P0r/r = P0. That means the potential of each shell is zero with a statistically
error of constant variance over all radii. Integrating the contribution of the shells we get a divergent
integral similarly to the integral of sine or cosine.
The Laplace transform shows a way to handle such divergent integrals. We introduce the damping

factor exp(−δr) for the integrand with r =
√

(ld)2 + (md)2 + (nd)2 and calculate the sum according to
Eq. (8) using this damping factor. The practical computation written in C-language uses a spherical
body of ions with radius rmax = 500 simple ion distances d. The damping factor δ was chosen so that for
r= rmax we got exp(−δr) = 10−5. The thickness of a shell was dr = d/150. Table 1 shows the results of
the numerical calculation.
Here P0 is the potential for β = 0. P1 is the potential calculated without any contraction of the crystal.

P2 is the potential calculated with Lorentz contraction, i.e., contraction only in x-direction here. P3 is
the potential calculated with length- and cross-contraction introduced above. Since the absolute value is
not of interest, table 1 shows the relative change of the calculated potentials with increasing β.
The relative potential P1/P0 changes as (1−β2)2/3. The relative potential P2/P0 changes as (1−β2)1/2.

Relative potential P3/P0 does not change its value with changing β. Any decrease of the potential energy
of the crystal lattice is physically not explanable. So, case 3 with cross and length contraction is the only
case here with non decreasing potential.
Based on the above numerical result, we consider the process of displacement of the ions in the lattice

while the velocity of the crystal increases. Because the absolute values of relativistic length contraction
for the lattice cell are too small we conclude that the shift of the ions in each cell of the lattice occurs
in both directions due to the above defined cross and length contraction. Because the quotient of length
and cross contraction (1 − β2)/(1 − β2)1/2 = (1 − β2)1/2 is the same as the SR or Lorentzian length
contraction (1− β2)1/2, we get the same null result for the MM experiment as the SR or the Lorentzian
ether theory.

V. CONCLUSON

The authors showed starting from basic considerations how the sizes of the moving rigid bodies are
determined from conditions of equilibrium of the ions of the lattice. It seems, however, that the other
type of contraction of relativistically moving bodies yields the same effects as the SR predicts. Actually,
if we calculate the difference in the optical paths in the moving interferometer, we obtain the same value
as Eq. (24) gives. The SR states that, while the interferometer moves, the arms contract as

L ∥
mov =

√
1− v2/c2L

∥
rest ; L⊥

mov = L⊥
rest . (26)
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Then, instead of Eqs. (21) and (22) we have

t′ABA = t′AB + t′BA =
L

∥
mov

c− v
+

L
∥
mov

c+ v
=

2cL
∥
mov

c2 − v2
=

2c
√
1− v2/c2L

∥
rest

c2 − v2
=

2L
∥
rest

c
√

1− v2/c2
, (27)

and

t′ACA = t′AC + t′CA =
2L⊥

mov√
c2 − v2

=
2cL⊥

rest√
c2 − v2

. (28)

One obtains the difference in the traveling times from Eqs. (27) and (28)

∆t′mov =
2L

∥
rest − 2L⊥

rest

c
√

1− v2/c2
. (29)

In the SR the factor 1/
√

1− v2/c2 is eliminated by the time dilation

∆t′mov → ∆t′mov√
1− v2/c2

so Eq. (29) should be transformed to

∆t′mov√
1− v2/c2

=
2L

∥
rest − 2L⊥

rest

c
√
1− v2/c2

. (30)

hence the difference in the optical paths conserves

∆PSR
mov = c∆t′mov = 2[L

∥
rest − 2L⊥

rest] = ∆Prest (31)

which yields a correct null result. We find the same time dilation in the Lorentz-FitzGerald theory
yielding the null result too.
However, despite both types of the contraction of the bodies, i.e. relativistic and considered above,

predict no change of the interference picture when the velocity of the interferometer, with respect to the
cosmic background radiation frame, changes there is one difference between these types of contraction.
Below we analyze it in more detail.

1. The magnitude of the contraction we consider above (WO contraction) is stronger than the magnitude
of the SR contraction. Because we derive the WO contraction from the Maxwel equations which are
primary with respect to the SR [13], we should conclude that the rigid bodies, contract, while they
move, in accordance to the WO contraction. The optical path A → B → A of the light beam in the
interferometer can be found, in the CBR frame, either from Eq. (21) or from geometric considerations of
Fig. 1

P ∥
mov =

L
∥
mov

1− v/c
+

L
∥
mov

1 + v/c
=

2L
∥
mov

1− v2

c2

= 2L
∥
rest (32)

where L
∥
mov contracts in accordance to Eq. (17).

2. We will measure this optical path in number of the wavelengths λ′, i.e in the number of the crests of
the EM field distribution in the resonance cavity of the Michelson interferometer. Because distribution
of the EM field in the resonanse cavity is of stationary type, the factor exp(iωt) in the term describing
the EM wave can be neglected.
3. Because the light source is rigidly linked to the laboratory frame, we should transform λ′ to the CBR
frame. It is made in accordance to Eq. (11.19) or Eq. (11.22) of [10]

λ =
λ′√

1− v2/c2
. (33)
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So the number of the crests in the resonance cavity is

N =
P

∥
mov

λ
=

2
√
1− v2/c2L

∥
rest

λ′ . (34)

4. Now we use the fact that the quantity N is invariant because the invariant quantity is the phase of
the EM wave (Sec. 11.4 of [10]). It means that if we count the number of crests of the EM wave passing
some distance in two frames, we must obtain the same value of these crests. So if we count this quantity
from the above equation in the laboratory frame, we should obtain the correct result. All quantities in
the rhs of Eq. (34) are now defined in the laboratory frame so this formula can serve to count the crests
of the EM field distribution in the resonance cavity of the interferometer.
5. To find the quantity N , it is very difficult but in principle a solvable experimental task. Actually, one
needs to solve a simplier technical task. One can see from Eq. (34) that the number of crests depends on
the velocity v of the laboratory frame with respect to the CBR frame and evaluation of Eq. (34) for the

values L
∥
rest ≈ 1 meter, λ′ ≈ 1 µm and if the velocity v changes from 300 km/sec (when the main axis of

the resonator is directed along the vector v) to 0 km/sec (when the main axis is directed transversally
to v) gives

∆N = N(v)−N(0) ≈ 1 . (35)

We note that a possibility to detect a quantity ∆N , depending on a velocity of the device with respect to
the CBR frame, is a result of two effects, namely contraction of the crystalline lattice of the material of
the device due to the convection potential and the relativistic Doppler shift. Actually, a technical tast of
detection of ∆N equal to the task of detection of the phase of coherent light incoming to some detector;
if the arm, at which ends the source and the detector are rigidly fixed, turns, according to Eq. (35) the
phase of the light ocsillations should change. We suggest that this effect can be used for orientation of
the space apparatuses in cosmos because a device working with this effect does not need in exchanging
information with the surrounding space; the arm with the source and the detector fixed at its ends is
completely closed system, however, if our calcualtions are correct, it allows to determine magnitude of
the velocity and direction of the vector of the velocity with respect to the CBR frame.

[1] Lorentz, H. A. (1892b). De relatieve beweging van de aarde en den aether. Verslagen van de gewone ver-
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[11] The type of the material of the rigid body is insignificant. It can be either crystalline or amorphous material;

what is significant here is that the ions of the material are located at the points of equilibrium and that these
points are determined by electrostatic forces. The only difference in the types of the material of the rigid
body is that due to ordering of the crystalline lattice, the calculation of the points of equilibrium of the ions
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[12] The arm AB is directed along the vector of the velocity of the laboratory frame with respect to the CBR
frame.

[13] The SR was derived from the symmetries of the Maxwell equations.
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The generalized Finslerian metric tensors are proposed. These tensors can have different number of 

indeces dependent on space dimension as well as space properties. The relationship of these tensors 

with the Finsler spaces associated with commutative associative algebras is analyzed. Nearest 

perspectives to research of the tensors of this type are discussed. The generalized differential 

equations of Finsler geodesics are derived and discussed. 

 

1. Introduction 
The notion of metric tensor of Riemann and Finsler geometry is the central notion that determines 

the metric properties of space considered. The metric tensor is the well known notion and tensor 

analysis of metric space is hardly possible without it. It is usual to consider the metric tensor as a 

tensor of the second rank. Let us ask whether it is possible to generalize this fundamental notion of 

Finsler space not to restrict ourselves by the second rank’s type of tensor. If this approach is 

possible mathematically it will permit to look for some applications in modern relativity and 

quantum physics. The more the rank of the metric tensor the more components it has and it gives 

possibility to look for, for example, correspondence between these components and fundamental 

physical interactions. This article is the first attempt to consider the generalized metric tensor as a 

mathematical notion. 

The Finslerian metric tensor is well known historically to be found by Berwald L, Synge G.L. 

and Taylor J. H. at 1925 by analogy with .the Riemannian metric tensor [1]. Although this analogy 

has helped to develop the Finsler space analysis it has its own boundary. The Riemannian metric 

tensor has fundamental role but it is not right for Finsler geometry because the Finslerian metric 

tensor of the second rank has special properties unlike its the Riemannian predecessor. The further 

consideration gives possibility to doubt universal role of the Finslerian metric tensor of the second 

rank and therefore gives some background of its generalization. 

 

2. Difference between the Finslerian metric tensor and  the Riemannian metric 

tensor 
The components of the Riemannian metric tensor appeared initially as the coefficients of the second 

order’s expansion of the distance between near points, that is, we have: 

ji
ij dxdxgds =2

             (1) 

Therefore the components in the fixed system of coordinates depend only on the point of  

Riemann space: 

)(xgg ijij =                 

Unlike Riemann space Finsler manifold is determined by set of axioms one of which represents 

the property of homogeneity of the Finslerian metric function. Owing to this important axiom the 

metric function has the next form analogous to (1): 

ji
ij

yyyxgF ),(2 =             (2) 

Similarity between (1) and (2) is limited because the components in (2) depend not only on the 

point of base manifold x , but also on the contravariant vector of tangent manifold y . This imparts 

new character to (2): this expansion is multiple and hence it has not universal nature. 

There is the fundamental formula of the Finsler metric tensor components in the books of this 

geometry [2-4]: 
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ijij
yy

Fg
∂∂

∂=
22

2

1
             (3) 

However it should be noted that the expansion (1) with the aid of (3) is not unique. 

To illustrate it we consider Finsler space associated with the commutative associative algebra 

3H . This algebra is the product of three real number’s algebras: RRRH ××=3 . The metric 

function of it is [5]: 

3213 yyyF =              (4) 

It isn’t difficult to check up that the square of this very metric function can be expanded as the 

following (2) using  not only the classical metric tensor but also some other matrix (6): 

ji
ij

ji
ij yyyyygF ~2 ==  
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gg
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y
ij

=   (6) 

Besides the components of the Finslerian metric tensor unlike Riemann space has another 

property. These components may have  a singularity at the point 0=y  if  0→iy  by some 

special way. For example in the Berwald-Moore space of the third order (4) a component will tend 

to infinity if the denominator tends to zero more fast the numerator does. 

The possibility of such singularities may be considered as another disadvantage of two rank 

tensors. But the generalized metric tensor may has not this disadvantage. For example the 

generalized three rank metric tensor of the Berwald-Moore space associated with the algebra 3H  

has constant components and consequently the notion of three rank metric tensor is more 

appropriate for this space.  

 

3. The generalized three rank Finslerian metric tensors 
Owing to the key property of homogeneity of metric tensor in the form 

),(),( yxkFkyxF =             

we can determine a generalized metric tensor. 

The Euler’s theorem of homogenous function gives the next identities: 

ji

g

ij
i

y

i
yy

yy

Fy
y

FF

iji

43421321
∂∂

∂=
∂
∂=

222
2

2

1

2

1
      (7) 

It is usual way to determine the covariant components of tangent vector iy  and metric tensor 

ijg . Their connection with the contravariant components 
iy  is expressed by a formula: 

i
ijij ygy =                

Due to the Euler theorem for homogenous functions it is possible by analogy with (7) to expand 

not only the second one but also the higher powers of the Finslerian function to the sum of products 
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of the  contravariant components of the vector. Further expanding  of the 3-d and 4-th power of this 

function is going over and as a consequence of which the generalized metric tensors are defined. 

kji

G

ijk
ji

y

ij
i

Fyy

i
yyy

yyy

Fyy
yy

Fy
y

FF

ijkijii

443442143421321
∂∂∂

∂=
∂∂

∂=
∂
∂=

=∗

33323
3

6

1

6

1

3

1

)3(

  (8) 

The components of the covariant vector 
∗
iy  are appeared to be at the first step of (8), but they 

differ from the components of the covariant vector iy  just by the factor  of F  and that is why are 

out of any interest. The second step of this expansion gives the doubly covariant metric tensor 

)3(
ijy . The tensor ijy

~
is a result of  this tensor division by the Finslerian function F , that is, we 

have: 

Fyy ijij
)3(~ = .            (9) 

The tensor (9) is the tensor that takes part in the alternative expansion of the square of the 

Finslerian function and that is why can be considered as a partial analogue of the fundamental 

metric tensor ijg  (3). The relationship of these two tensors is expressed by the following formula: 

( ) 2~ 2Fyygy jiijij += .         (10) 

Easy to see that the tensor (10) has resemblance to the angular Finslerian metric tensor ijh [4]: 

2Fyygh jiijij −= .            

Have a look at the tensor ijy
~

 properties. 

1. As the fundamental metric tensor ijg , the tensor ijy
~

 is homogeneous function of zero degree, 

that is: 

),(~),(~ yxykyxy ijij = .            

2. As the fundamental metric tensor ijg , the tensor ijy
~

can be used for raising and lowering index 

of arbitrary tangent vector, that is: 

j
iji yyy ~= , 

j
iji yyy ~= .           

3. Unlike the fundamental metric tensor ijg , the tensor ijy
~

 does not allow to raise and lower 

indeces of tensors of  the second  rank and the highest one. For example the result of lowering index 

of an arbitrary tensor of two rank ijT  by ijy
~

if it had been raised by ijg is expressed by the 

formula: 
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4. The internal product of ijy
~

 by the tensor ijg  is equal to 1: 

1~~ == ij
ijij

ij gygy .             
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5. If we construct the Cristoffel symbols on the base of ijy
~

 by usual way, that is, we have: 
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this geometrical object obeys the usual equations of the Finslerian geodesics: 

0~
2

2
=+

ds

dx

ds

dx

ds

xd kj
i
jk

i
γ , ljk

il
ljk

ili
jk yg γγγ ~~~~ ==  (11) 

The proof of this property is analogous to the proof of  assertion (20) (see further). 

At the last, third step of the expansion (8) we determine the third rank metric tensor ijkG : 

ijkijk
yyy

FG
∂∂∂

∂=
33

6

1
          (12) 

It should be noted that the generalized metric tensors (9) and (12) are symmetrical by all their 

indices and so are all the metric tensors. 

 

4. The generalized four rank Finslerian metric tensors 
It is possible to expand the fourth degree of the Finslerian function by analogy with (8)  to give the 

next set of identities: 
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(13) 

At the first step of (13) we have the covariant vector 
∗y  the components of which differ from 

the components iy  by the factor of 
2F  while we have the doubly covariant tensor 

)4(
ijy  at the 

second step. The trebly covariant tensor ijky  and  four times covariant tensor ijklG  are appeared 

to be  at the third and the last, fourth step accordingly. 

Review the properties of the tensor ijklG . 

First, on considering an indicatrix of Finsler space ijklG  gives possibility to write down not 

only the equation of tangent plane to a indicatrix’s point (14) but also the equations of tangent 

surfaces of two and three order (15)-(16):  

( ) 1, )0()0()0()0( =⋅ lkjimm
ijkl yyyyyxG          (14) 

( ) 1, )0()0()0( =⋅ lkjimm
ijkl yyyyyxG           (15) 

( ) 1, )0()0( =⋅ lkjimm
ijkl yyyyyxG           (16) 

Consequently the known classifications of surfaces of the second and third order permit us to 

classify the indicatrix’s points with the aid of ijklG . 

Secondly, the tensor ijklG  allows to set the five rank geometrical object the components of 

which may be called the generalized Christoffel symbols. We define the components of this object 

as the following: 
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The  generalized 5-rank Christoffel symbols of the first kind have properties analogous to the 

properties of the symmetry of classic 3-rank symbols of Christoffel:  

а) a symmetry property by 1, 3 and 5, and also by 2 and 4 indices:  

52341541231432554321 iiiiiiiiiiiiiiiiiiii γγγγ ===        (18) 

b) a property connected with the permutation of 1 and 2,4 and 5 indices: 

3

54214531254321 6

1 i
iiiiiiiiiiiiii xG ∂∂=+ γγ          

c) a property connected with a shift )( dsdxxdx iii =′  along curve with the natural 

parameter s : 
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With the help of the generalized Christoffel symbols the following assertion can be formulated: 

Assertion. The following generalized form of equations for the Finslerian  geodesics  is fair: 

0
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where 
)4()4()4( ~,~

inniinjknlm
ini

jklm
yyyyy −== γγ . 

On the proving of this assertion we shall predicate upon the equation of Euler-Lagrang where 

the length along the curve s as natural parameter is used: 
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Transform the first item into (21): 
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Now transform the incoming into (22) derivatives: 
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Substituting into (22) we get the following expression: 
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Note that ( ) 1, =′xxF  due to our choice of the length along the curve as a parameter. Besides it 

is evident from (13) that 
)4(

ik
j

ijk
ydsxy =′ . As a result the first item in the Euler-Lagrang equation 

looks like the following simple form: 

( ) j
jiiji
xyyy

x

F

ds

d ′′⋅−=







′∂

∂ )4(3            

Transforming the second item of the Euler-Lagrang equation is possible as well: 
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Taking into account the property c) of the generalized Christoffel symbols (19) the equations of 

geodesics look like the following form: 

0~ )4( =′′′′+′′ mlkj
jkilm

j
ij xxxxxy γ ,       where  

)4()4(~
ijjiij yyyy −=    

Introducing matrix 
ijy )4(~

 inversed to the matrix. 
)4(~

ijy  and marking jknlm
ini

jklm y γγ )4(~=  we 

get the very equation (20).  

 

5. Classification of the generalized Finslerian metric tensors  
In conclusion to systematize the available concepts of generalized metric tensors we shall classify 

them. 

Definition. We’ll say that the generalized metric tensor belongs to the class (m, n), if  its 

rank is equal to, and its components are the coefficients in expanding  of  n-power of the 

Finslerian function, i.e. equality is correct 
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According to this definition the components of the metric tensor of class (m, n) is determined by 

the formula:  

mm ii
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n
ii

yy

F

n

mG
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11

)(
...

,   )2( >≥ mn          

Note that the fundamental metric tensor belongs to the class (2,2). 

 

6. Concluisions 
The generalized Finslerian metric tensor is determined in this paper, some their properties are 

investigated and their classification is proposed. Besides the generalized five rank Christoffel 

symbols are proposed; it gives possibility to generalize the differential equations of the Finslerian 

geodesics. 
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Six-Dimensional Treatment of CPT-symmetry  
 

I.A.Urusovskii 
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E-mail: mironov@akin.ru 
 

In distinct of standard formulation of the CPT-theorem, in which the properties of particles and antiparticles, 

respectively, under direct and reverse flow of time are collated, in the six-dimensional treatment of CPT-

symmetry the properties of the same elementary particle are collated under direct and reverse flow of time. 

In this treatment the charges of particles and antiparticles are the same but the signs of the corresponding 

electrical and magnetic fields are defined by the sense of revolution of the particle or antiparticle in the extra 

dimensions space (in a circle of Compton radius). Under change of the flow of time, the sense of this 

revolution is changed on reverse one, that leads to the change of signs of the fields on opposite ones. By this 

the corresponding trajectories in the whole space occurs to be as reflected from a mirror. The motion of a 

particle along the helical line (of Compton radius) with revolution to the left (right), viewing in the direction 

of travel, is changed onto the motion along the mirror-reflected helical line with revolution to the right (left). 

The corresponding formulation of the theorem is following: If the flow of time is reversed, the particle 

moves in the whole space backward along the same trajectory as under direct flow of time. By this 

automatically the signs of the fields change on opposite ones, and the trajectory, viewing in the direction of 

travel, in the whole space occurs to be as reflected from a mirror, so that this particle acquires all properties 

of the antiparticle. The sign of charge may be regarded as nothing but a mark corresponding to positive or 

negative sense of revolution in the space of extra dimensions. The six-dimensional treatment of the Coulomb 

force of interaction between two charges is given. The electric force is due to motion of charges in the extra-

dimensional subspace and is equal to correspondent Lorentz force.  
 

The equation of dispersion is the same for acoustic waveguide, electromagnetic one, and de Broglie 

waves: 2cvv gph = , where phv  is the phase velocity, gv  group velocity, c  speed of waves in a free 

medium (speed of sound in the first case and of light in two other cases). The main characteristic of 

any waveguide is that it has finite transverse dimensions. The dispersion of waves is due to just 

these dimensions. It indicates that the space with which we deal is three-dimensional only 

approximately, but has a small (Compton) extra-dimension thickness.  

The proposed treatment is based on the principle of simplicity [1] giving preference to that 

among competing hypotheses which is based on smaller number of postulates, that is, more simple. 

It rises from Einstein’s statement “the nature saves on principles” and idea of F. Klein [2-4] on 

movement of particles with speed of light in a multi-dimensional space. These ideas entered in that 

principley.  

It is well known that the light and as well particles of substance have corpuscular as well wave 

properties of which examples are diffraction of electrons, when they represent as a wave, and 

photoeffect, when photon represents as a particle. On this reason, following to the principle of 

simplicity, it is naturally to suppose that several basic properties of light and particles are similar. 

The basic property of light is its propagation with the same speed in any system of reference. Then 

as well elementary particles of substance must move with the same speed. It is impossible in three-

dimensional space but possible in multi-dimensional one if positions of particles are recording by 

an observer in projection on three-dimensional space 1x , 2x , 3x  ( )X  which we shell consider as 

homogeneous and isotropic. By this, Newtonian insight extended on six-dimensional Euclidian 

space ( )6R  with projection on three-dimensional space X  give known relativistic results.  

The whole space is supposed to be six-dimensional one, as only for it a simple interpretation of 

spin and isospin of electron and other elementary particles is possible. The first substantiation of 

six-dimensionality of space was given in [5], where fundamental physical constants are calculated.  

Assume that for moving with speed of light in six-dimensional space 6R elementary particles 

considered as material points, formulas of the Newtonian mechanics are applicable with appropriate 

chose of time (specifying below). The particles should be acting by a force (of cosmological 

nature), which is orthogonal to subspace X  and keeping them in small vicinity of X . Without 
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such force, withstanding centrifugal force, existence of macroscopic three-dimensional bodies in the 

Universe would be impossible. The positions of particles are fixing by an observer in the projection 

on subspace X . (More precisely, we use cosmological small site of X tangential to three-

dimensional Universe as three-dimensional sphere in six-dimensional space with neglecting the 

curvature near this site).  

The particle, which is at rest in a projection on X  in an inertial frame of reference, moves with 

the speed of light с , in the simplest case, in a circumference in three-dimensional subspace Y  

adding up X  until 6R , with the center of the circumference in X (by 1y = 2y = 3y = 0). In any 

other inertial frame of reference this particle is moving in a helical line located on a cylindrical 

surface (a motion pipe) in 6R  with an axis in X .  

By natural measure of the proper time of a particle is the number of its revolutions in additional 

subspace Y around the axis of pipe. Accordingly, we assume that the proper time of a particle is 

proportional to the number of such revolutions in Y or to the path length traveling in Y . 

1 –  helical trajectory of a particle moving in six-dimensional space with speed of light c  along the cylinder 

surface of Compton radius ( )mca h=  with axis in subspace X  and directrix in subspace Y  

2 – helical line of equal proper time of this particle. It passes through the particle perpendicular to that helical 

trajectory. It moves along the same cylinder surface with velocity of de Broglie wave. Its pitch is equal to 

the de Broglie wavelength 
 

Generally, the number of revolutions of a particle is proportional to θcos , where θ  is the angle 

of an inclination of a helical line, as shown in figure. Therefore, if a particle makes one revolution 

per a proper time τ  by clock of the observer “at rest”, relatively of which the particle moves along 

the tube with a speed θsincv = , where c  is speed of light, then it will take place per time 

θτ cos=t . It is obvious that 

cv=θsin , ( )21cos cv−±=θ ,          (1) 

where upper sign is referred to the particle revolving about the axis of tube in positive sense and 

lower sign is referred to the antiparticle revolving in negative sense. Such a chose of sign 

corresponds to the following relation between lapses of proper time of a particle (or antiparticle) 

τd and time of the observer at rest dt : 

( )21cos cvdddt −=±= τθτ .         (2) 

In the frame of reference at rest ( )K , a particle moving with speed of light c  on the motion tube 

under angle θ  to the direcrix of the tube has a component of speed along the direcrix equal to 

θcosv . According to (2) the proper time of a particle from the point of view of the observer at rest 

is proportional to θcos  as well, so that the particle in proper frame of reference ( )K ′  moves with 

speed of light c  as well. 

x

s θ
ζ

1 2
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A particle at rest in K , a particle moving with speed of light c  along the direcrix, displaces per 

proper time τd in an interval ds equal to 

τcdds ±= .               (3) 

The momentum of this particle is a vector directed along the tangent to the direcrix at a point where 

this particle is placed at given time. The magnitude of this vector is mc being the product of mass 

m  of the particle by its speed c . This is the momentum at rest in relativistic mechanics. The energy 

at rest 0E , according to definition, is the product of momentum and speed of a particle: 
2

0 mcE = . 

In the general case, the total momentum of a particle is the vector directed along the tangent to the 

helical trajectory. Its value p  is the product of mass m  of a particle by the relation of its path  

cdtd =ς                 (4) 

in 6R  to a proper time τd  expended for this path: 

( )21
cos

cvmc
θ

mc

τd

ςd
mp −===          (5) 

This is relativistic formula for total momentum of a particle [6]. 

Projections xp  and yp  of a total momentum on the generatrix and directrix of a tube are equal 

to co-ordinate and temporal components of 4- momentum of a particle, respectively [6]: 

mcpx ±= =θθθθtan ( )21 cvmv −  ,     mcpy ±= .      (6) 

In the general case, 0≠θ  and the total energy of a particle E  is the product of the total momentum 

p  by the speed of movement c along a helical line: 

( )22
2

1
cos

cvmc
θ

mc
pcE −===           (7) 

This value is the total relativistic energy of a particle. Note that the relation of the total energy to the 

total momentum of a particle occurs to be the same as for a photon. It is yet another common 

property of light and substance.  

Let us assume that particles having charges of opposite signs revolve about the axis of motion 

tube in opposite senses. Particles and antiparticles have charges of opposite signs and revolve in 

opposite senses. For time undergoes a reversal, a particle would go back along its helical trajectory 

and hence revolve in opposite sense. This signifies that its charge has to change its sign, so that this 

particle has to transform to its antiparticle. In this case, the motion of such a particle will be as 

reflected in mirror. The sum of above properties is CPT-symmetry. 

The displacement of a particle in an interval ds along a directrix of a motion tube and respective 

turn through a central angle adsd =φ  about the axis of the tube, where a  is radius of the tube, is 

identical in any frame of reference, is invariant. It is because an angle φ  of a turn of a particle about 

the axis of the tube is independent on a velocity of an observer in X  relative to this particle. 

Denoting through dx  in system of reference K  a projection of a displacement ςd of a particle 

on the surface of the tube on its generatrix and applying the Pitagorian theorem to the rectangular 

triangle shown in figure, one obtains the expression for the interval: ( ) ( ) ( )222
dxcdtds −= . The 

projection of sides of that triangle on the trajectory of the particle gives 

ςθθ =+ sincos xs .             (8) 

Put initial conditions in the form 0== τt  by 0== sx . Then referring to (3) and (4) it follows: 

τcs ±= ,  ct=ς .              (9) 

Substituting (1) and (9) into (8) gives the Lorentz transform for time: 

( )[ ] =−±= θθτ cossincxt ( )[ ] ( )22
1 cvcxvt −− . 
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Similar consideration applied to the system of reference K′  with account for that the system 

K  moves relatively to considered particle with velocity v−  leads to the reversed transform: 

( )[ ] =′+±= θθτ cossincxt ( )[ ] ( )22 1 cvcvx −′+τ , where x′ is the co-ordinate along 

the generatrix in K . To the transition from the system K  to K′  corresponds a turn throw an angle 

θ−  about the origin 0== sx  of co-ordinate net sx,  on the surface of the motion tube, together 

with trajectories of particles on it. This turn transfer a helical trajectory in the directrix of the tube.   

For a geometrical interpretation of rest Lorentz transforms let us consider a trajectory of a 

particle moving along the tube with the same velocity v  and intersecting at a time 0=t  the helical 

line 0sincos =+ θθ xs  at its arbitrary point. In the system of reference K , trajectories inclined 

under the angle θ  to the directrix are the lines of constant co-ordinate x′  of the system K′ . The co-

ordinate x′  is measured along the helical line describing by equation (8). The measuring is taken 

from the normal section of tube θς sin== vtx  until a section of which the particle achieves at 

time t . Projecting segments x′ , x , ς , and s  on the generatrix and directrix, the trajectory of 

particle, and the helical line (along x′ ) perpendicular to the trajectory one obtains by θcos > 0 : 

xx =+′ θςθ sincos , ςθθ =+ sincos xs , sx =′− θθς sincos , xsx ′=− θθ sincos . 

Dividing these equalities throw by θcos  and eliminating ς,s  and θ  by means of  (1) and (9) 

according to which, in considered case, τcs = , ct=ς , cv=θsin , ( )21cos cv−=θ , one 

may easy obtain the Lorentz transforms in the standard form. 

The proper length of moving rigid scale is the difference of co-ordinates x′  of its ends. In the 

system K , it is equal to the length of a segment of the helical line perpendicular to the trajectories 

of particles moving with this segment between normal sections of the motion tube corresponding to 

those ends. It is a segment of the line of equal time in the system K′ . The length of the same scale 

in the system at rest K is the difference of co-ordinates x  of its ends. It is equal to the distance 

along the generatrix between those normal sections that is in θcos1  less then the proper length. 

Thus, the Lorentz contraction of moving scales is a result of projection of lengths in multi-

dimensional space on three- dimensional space. Non-simultaneity of spatially spaced events in one 

system of reference with simultaneity in another is explained by non-parallelism of helical lines of 

equal time in system of reference moving one relatively another.  

Above interpretation of the formula (2) holds as well for curve axis of a motion tube because in 

any case all normal sections of such tube are perpendicular to any directions in the subspace X  to 

which belongs the axis of a tube. 

The energy of a photon is equal to νh , where ν  is frequency of light, h  the Plank’s constant. 

By virtue of a principle of similarity of the basic properties of substance and light concretizing the 

principle of simplicity, the rest energy of a particle may be represented as a quantum of energy νh , 

so that 

νhmc =2
.               (10) 

Unique and natural frequency ν  for a particle of substance is the frequency of its revolutions in 

extra-dimensional subspace Y . On the other hand, the particle moves with speed of light along the 

directrix of the motion tube, whence νπ ca =2 , where is radius of tube. Eliminating ν  from this 

equality and (10), one finds mcha =π2 , mca h= , that is the length of directrix is equal to the 

length of Compton wave. 

Another helical line placed on the same tube perpendicular to helical trajectory of a particle and 

passes through the particle, is the line of equal proper time of the system K′ . This helical line 

moves along the tube with velocity of de Broglie wave vccV 2sin == θφ , where v  is velocity of 

the particle in the subspace X . The pitch l  of the helical line is equal to the de Broglie wavelength  
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. Whence and from (6) and (7) is seen that as  is equal to the phase of de 

Broglie wave ( )[ ]hxpEt x−± . In the place of position of the particle vtx =  this phase is an angle 

of turn of itself particle on the motion tube. Tthe function ( )asiexp  satisfies the Klein-Gordon 

equation.  

The proper moment of momentum S  of a particle is a vector product of the proper momentum 

and radius vector of this particle. The component of the radius vector and the component of velocity 

of the particle on the axis of the motion tube are perpendicular to the plane of revolving in Y and 

therefore do not give any contribution in S . Hence for a particle moving in six-dimensional space 

along a helical line but consequently in a straight line in a projection on X , S  is a vector product 

of projection of momentum and radius vector of this particle on Y . In this case, the magnitude of 

momentum S  becomes =S | S | == apy hh =mcmc . This formula remains some arbitrariness 

in the orientation of vector S  in six-dimensional space: it may be oriented in any direction in four- 

dimensional subspace perpendicular to the plane of revolving in Y . In the general case, vector S  

has four non-zero components along directions perpendicular each to other and plane of revolving 

of the particle in Y . In the case of revolving in the plane 2y , 3y , such components are 1S , 2S , 

3S , 4S  along the axes 1x , 2x , 3x , 1y , respectively, and =S ( ) =+++
212

4
2
3

2
2

2
1

SSSS h . 

Components 1S , 2S , 3S  are components of spin of the particle, 4S  is a projection of isospin of 

the particle. Thus, spin and isospin are the projections on X  and Y , respectively. By (6), yp  is 

independent on velocity v . Hence spin and isospin are independent on velocity v  also and do not 

subjected to the Lorentz transforms.  

Vector S  remaining perpendicular to the plane of revolving of the particle has three degree of 

freedom and may be oriented in arbitrary manner relative to those co-ordinate axes. To particles 

with spin one half corresponds uniform distribution of components of the vector over above four 

axes perpendicular each to other and plane of revolving of the particle in Y . Then these 

components are equal to 2h+  or 2h− , and the sum of squares of these components in X  is equal 

to ( ) 243 h . In quantum mechanics it is “total” (in three-dimensional space) square of the proper 

momentum of a particle. 

To last case orientations of vector S  obtained from previous orientations through allowable 

turns retaining one or two given components invariable are referred as well. So, if one of 

components of the vector in X  and one component in Y  have a fixed value 2h+  or 2h− , then 

the vector retain a possibility to turn about two correspondent axes. In this case, two non-fixed 

components will not have of specific values (it is ordinary situations in quantum mechanics, where 

absence of fixation of quantities is rather the exclusiveness then a rule). For equal allowed 

probabilities of orientations of that vector, means-square components mentioned above are equal to 

2h . Change of a direction of revolving of a particle about the axis of the motion tube on the 

opposite sense as well changes the signs of the components on opposite and corresponds to the 

transition to antiparticle.  

The relations of Heisenberg uncertainty are due to uncertainty of co-ordinates and momenta of 

a particle in Y . In fact, let the directix of a motion tube of a particle is displaced in the plane 1y , 
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2y . Then projections of the momentum of a particle on axes 1y  and 2y , and coordinates of the 

particle along this axes are equal to φsin1 mcpy −= , φcos2 mcpy = , φcos1
mc

y
h

= ,  

φsin2
mc

y
h

= , where φ  is the angle of a turn of the particle about the axis of tube reckoned from 

the axis 1y . Average over φ  values of coordinates and projections of the momentum are equal to 

zero but their mean-square values are equal to 

2
2
2

2
1

2

1






==

mc
yy

h
, 

( )22
2

2
1

2

1
mcpp yy == , whence one finds seeking relations 

⋅2
1yp =2

1y ⋅2
2yp =2

2y 42
h . 

It is of interest, why the values of the proper momentum and its components in X  and Y , that is 

spin and isospin, are independent on mass of an elementary particle? In six-dimensional treatment 

the answer is obvious: the momentum is proportional to this mass but the radius of the Compton 

orbit in Y  for this particle is inversely proportional to this mass, and therefore the product of 

momentum and radius of the Compton orbit is independent on this mass. 

The proper magnetic moment µµµµ  of a charged elementary particle is defined similarly to the 

proper moment of momentum S  accordingly to the known formula of electrodynamics [7]: µµµµ  

c

e

2
= [ ]Rc , where R  is six-dimensional radius vector of the particle, c  vector of its velocity in Y . 

Since a contribution in this vector product gives only the projection a  of the radius vectorR  on 

subspace Y , one finds µµµµ
c

e

2
= [ ]ac . Whence, accounting for mutual perpendicularity of vectors 

a  and c  as well equalities  |a | a=  and |c | c= , one finds the magnitude µ  of the proper moment 

µµµµ  of the particle which occurs to be equal to the Bohr magneton: 

B
mc

eae
µµ ===

22

h
.             (11) 

In the simplest case, when the vector µµµµ  has not components in subspace Y , the components of µµµµ  

in X defines a three-dimensional vector, of which magnitude is equal to the Bohr magneton. 

A projection of the magnetic moment onto arbitrary chosen direction (called the axis of 

quantization) in subspace X may have a fixed value only in the case when the projection of the 

proper moment of momentum has a fixed value as well. In this case, according to (11) Bx µµ ±= . 

At uniform distribution of components of the proper moment of momentum over four axes which 

perpendicular each to other and a plane of revolving of a particle in Y , in considered case 

2mcaSx ±= , that equals 21+  or 21−  (in units of h ). Whence mceSxx =µ  in accordance with 

the experiment of Stern and Gerlach.  

The six-dimensional treatment of considered above and other physical values and phenomena 

stated in [8-12].  

In the general case, the moment of momentum has four nonzero components along directions 

perpendicular each to other and a plate of revolving of a particle. Therefore the theory of spin and 

isospin must use explicitly or implicitly four co-ordinates and four projections of vectors on the 

axes of that co-ordinates. The total moment of momentum M  in 6R  is the vector product of the 

total momentum +xp mc  and radius-vector ar +  of a particle in 6R , where xp  and r  denote 

momentum and radius vector in X , mc and a momentum and radius vector in Y . Moment M  is 
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four-dimensional vector perpendicular to the plane of revolving of a particle (in Y ). On average 

over a period of revolution about the axis of the tube, the cross terms disappear and then 

SLM += , where L  is the orbital moment in X , and =S [a mc ] the spin-isospin moment of 

revolving in Y . Three components of S represent the spin projections 1S , 2S , 3S  on X , and the 

component on Y  represents isospin 4S . Hence, on account of the mutual perpendicularity of 

vectors a  and c , and equalities |a | a= ,  |с | с= , one obtains h=S , 
22

4
2
3

2
2

2
1 h=+++ SSSS .  

At uniform distribution of components on four axes of co-ordinates, which are perpendicular to 

the plane of revolving in Y , one finds 2h=jS , 4,3,2,1=j ; 43 22
3

2
2

2
1 h=++ SSS .  

The disposition of two electrons on the opposite sides of the same tube of motion has energetic 

advantage. By this the distance between them in the whole space is equal to
22 4arR +=  where 

r  is the distance between projections of the particles onto X , a  is the distance from the axis of 

their revolution in Y . The tube radius is depended on r  and tending asymptotically to 

( )mca h=∞  with increasing of r , m and c  being mass of particle and speed of light at 

infinity, respectively. By such a revolution with the shift in phase π  between two particles the 

Coulomb force of their repulsion in the whole space is equal to 
22

Re where e  is the charge of 

electron. Projections of this force onto subspaces X  and Y  are ( ) χsin22
|| ReF =  and 

( ) χcos
22

ReF =⊥ , respectively, where Rr=χsin , Ra2cos =χ , so that 
32

|| RreF = , 

32
2 RaeF =⊥ . The force ⊥F  reacts against centripetal force ∞= amcF 2

0 . On this cause the 

radius of revolution a  is a little in excess of the tube radius ∞a at infinity.  

The energy at rest and centrifugal force in Y , as in the theory of gravitation [10, 11], are equal 

to γmccpE ςy
2

0 ==  and aEacpF ςyc 0== , respectively, where ςc  is speed of the 

particle on the motion tube, apy h=  momentum at rest, =γ caacς ∞ , so that 

∞= aγcacς .  

The balance of forces in Y is cFFF += ⊥0 . Referring to the relation ∞= amce α22
 (this 

is the classical radius of electron, α  is the constant of fine structure) and introducing ∞= aaz , 

this balance of forces may be represented as  

2

3
2 z

ρ

α
zγ −= ,             1(12) 

where ( ) 22
4zarρ += ∞ , 

22 4zρar −= ∞ , r  is the three-dimensional distance. Under 

the condition ∞= caacς  of conservation of angular moment, one finds  

zccς = ,  
21 zγ = .          (13) 

If l 0=r , then zρ 2=  and by (12) and (13) one obtains the equation 01
4

3 =−− z
α

z , whence  
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If electrons are ejected on head one to other with the same speed v  in X , the principle of 

energy yields  

( )
∞

∞
∞

−

=−++
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β
mcaa
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mc

β
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c

v

R

e

ς

11
1 2

2

0

1
2

,     (15) 

where ( )21 ςcvβ −= , ( )21 cvβ ∞∞ −= , ∞v  is the speed at infinity. The first term in the 

left side of equation (15) is an electric potential, created by the electron coming nearer, in the 

position point of other electron. The second term is the total energy of the electron under 

consideration, the third term is the work done by this electron against the cosmological force 

∞= amcF 2
0  at increasing of the tube radius from ∞a  to a . The right side of (15) is the total 

energy of electron at infinity. By (12), (13), the equation (15) may be represented in the form 

∞

−

=+
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βzβ

z
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ρ

α
z

11
11

2

1

.        (16) 

Whence by 0=v from (16) one has 
∞

=++−
βzρ

α
z

11
1

2 . If as well 0=r , then  

z

α
z

zz

α
z

β 4
12

1

2
1

1
2

+−=++−=
∞

,         (17) 

and according to (14) the kinetic energy at infinity is equal to 









−

∞
1

12

β
mc 32 1003945468.3 −×= mc  that for electron is equal to 1553. 146 eV.  

Applying the Bio – Savar formula to six-dimensional space, the total magnetic field of the 

charge at rest in X  is defined at the distance R  from the charge e  as H tot = 2cR

e
[c R 0] where 

R 0 is the unit vector directed from the charge to the point of observation, c  the velocity of the 

charge. For R  being the distance between two electrons 

R 0 r= 0 +χsin a 0 χcos  r= 0 ( )+Rr a 0 ( )Ra2 ,  

H tot 2R

e
= [ c 0R 0] 2R

e
= {[c 0 r 0] +

R

r
[c 0 a 0] 

R

a2
},   (18) 

where r 0 is unit vector along radius vector r  in X , a 0 unit vector along radius vector of the 

charge e in the plane of revolution in Y , and c 0  is unit vector along velocity c .  

Let us show that the Coulomb force of interaction between the two charges ( e  and e′ ) is the 

Lorentz force acting on this charges as moving in Y . Referring to (18) this force is equal to  

f
c

e′
= [ Hc′  tot] 2cR

ee′
= {[c′ [c 0 r 0]] +

R

r
[c′ [c 0 a 0]]

R

a2
}. Whence, with account of that 

for two interacting electrons cc −=′ , f
2R

ee′
−= {[c 0[c 0 r 0]] +

R

r
[c 0[c 0a 0]]

R

a2
}. 

Revealing the triple vector products and taking into account mutual perpendicularity of involved 

vectors and that in the case under consideration ee =′ , one obtains c 0 [c 0 r 0]] r−= 0,  

[c 0[c 0a 0] a−= 0, f r
R

e
3

2

= r 0 a
R

e
2

3

2

+ a 0. In the last formula the first term represents the 
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projection of the Coulomb force onto X , the second term is its projection onto Y . Their 

magnitudes are equal to ||F  and ⊥F , respectively. From this is seen that electric forces are due to 

the moving of charges in subspace Y , in distinct of that usual magnetic forces are caused by 

moving of charges in the same subspace X . The force ||F  equals zero at 0=r . This is the point of 

indifferent equilibrium, near which electrons may be slow moving comparatively long time if they 

were ejected on head one to other with original energy 1553.146 eV [12].  

Under change of the flow of time, the sense of revolution of particles in Y  is changed on reverse 

one, that leads to the change of signs of the fields on opposite ones. By this the corresponding 

trajectories in the whole space occurs to be as reflected from a mirror. The motion of a particle 

along the helical line (of Compton radius in Y ) with revolution to the left (right), viewing in the 

direction of travel, is changed onto the motion along the mirror-reflected helical line with revolution 

to the right (left). The sign of charge may be regarded as nothing but a mark corresponding to that 

or other (positive or negative) sense of revolution of a particle in the space of extra dimensions. In 

distinct of standard formulation of the CPT-theorem, in which the properties of particles and 

antiparticles, respectively, under direct and reverse flow of time are collated, in the six-dimensional 

treatment of CPT-symmetry the properties of the same elementary particle are collated under direct 

and reverse flow of time. In this treatment the charges of particles and antiparticles are the same but 

the signs of the corresponding electrical and magnetic fields are defined by the sense of revolution 

in the extra dimensions space. The corresponding formulation of the theorem is following: If the 

flow of time is reversed, the particle moves in the whole space backward along the same trajectory 

as under direct flow of time. By this automatically the signs of the fields change on opposite ones, 

and the trajectory, viewing in the direction of travel, in the whole space occurs to be as reflected 

from a mirror, so that this particle acquires all properties of the antiparticle. 

Author is grateful to Prof. S.A. Rybak for useful discussion. 
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1. Introduction 
The null result of the Michelson-Morley experiment [1] led to the development of the special 

relativity. The essence of the special relativity is the Lorentz transformation for the space and time. 

This allows to explain the null result of the Michelson-Morley experiment. The special relativity is 

logically controversial because operates with two inconsistent coordinate systems, the local system 

following the Galilei transformation, and the global system following the Lorentz transformation. 

This means that an experimenter extracts two inconsistent conclusions from one and the same 

experiment. This gives rise to unobservable phenomena within the framework of the special 

relativity. The Lorentz local time, 2/cvxtt −=′ , and the Fitzgerald-Lorentz contraction of length, 
2/122 )/1( cvll −=′ , are examples of unobservable phenomena. Such phenomena are non-physical 

by definition. Therefore the physical theory cannot contain such phenomena. It is necessary to 

search for an explanation of the null result of the Michelson-Morley experiment other than that of 

the special relativity. 

 The above ambiguousness of the special relativity means the double standards for the scales of 

length, time and mass. Einstein extended this ambiguousness to the general relativity. According to 

Einstein, an observer measures invariant scales of length, time and mass in his own frame but the 

scales shifted by the factor 12/122 )/1()/1( −−− cvcv  in the other frame (special relativity) and by the 

factor 2/12 )/21( cΦ−  (general relativity). Hence invariance of the scales of length, time and mass 

holds true only for an observer in his own frame and cannot be verified by an observer in the other 

frame. Then the theory of relativity, both special and general, is non-verifiable. 

 Illustrate the situation in the general relativity. Consider a particle orbiting around a gravitating 

body. The general relativistic corrections for a particle orbiting around a gravitating body can be 

incorporated in the Newtonian framework via an effective potential of the form  

2

22

2 rc

Gmvv

r

Gm cc
eff −+−=Φ            (1) 

where G  is the Newton constant, m  is the mass of the gravitating body, cv  is the circular velocity, 

c  is the velocity of light. The last term in eq. (1) is the general relativistic correction to the 

Newtonian potential. This term causes the general relativistic shift (advance) of the particle's 

perihelion. According to the Einstein general relativity, an observer in the frame of the particle 

measures the Newtonian potential, rGmN /−=Φ , while an observer in the background Euclidean 

space measures the modified Newtonian potential, )/1( 22 cvcN +Φ=Φ′ . Hence an observer in the 

background Euclidean space views the violation of the principle of equivalence. The principle of 

equivalence holds true for an observer in the frame of the particle. However such an observer 

cannot measure the general relativistic shift of the particle's perihelion. Then, within the framework 

of the Einstein general relativity, we cannot reveal an observer in the frame of the particle. Thus the 

principle of equivalence in the general relativity cannot be verified.  

 

2. Relativity within the framework of galilean electrodynamics 

Consider electromagnetic field as a wave with the vector potential A
r
 in the Euclidean space and 

absolute time of a preferred reference frame. The Maxwell-Lorentz equations are given by 
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One can represent the solution of eq. (2) as a plane wave [2]  
φiebAA −=

rr

0                 (3) 

where b
r
 is the polarization vector, krt −=ωφ  is the phase, ω  is the frequency, k

r
 is the wave 

vector.  

Suppose that electromagnetic wave propagates with the velocity c  with respect to a preferred 

reference frame independently of the velocity of the source. Let the emitter and receiver of the 

electromagnetic wave be situated in the frame moving with the velocity v  with respect to a 

preferred reference frame. The travel time of the electromagnetic wave is a function of the velocity 

of the frame. Then the phase of the electromagnetic wave should be a function of the velocity of the 

frame. The Michelson-Morley experiment [1] is thought of to determine the phase shift due to  

the velocity of the frame with respect to a preferred reference frame. However the Michelson-

Morley experiment [1] does not give the above phase shift. It was introduced the Lorentz 

transformation for the space and time to explain the null result of the Michelson-Morley 

experiment.  

Within the quantum mechanics framework one can conceive electromagnetic wave as a bunch of 

photons. The energy of a bunch of photons is given by 
2||ψωε VNem h=               (4) 

where N  is the number of photons, h  is the Planck constant, V  is the volume, ψ  is the wave 

function of photon given by  

.φψ ie
V

b −=

r

               (5) 

The momentum and energy of photon are given by correspondingly 

.ωε hh == phph kp             (6) 

In quantum mechanics, the wave function describes the wave of probability. The square of the wave 

function yields the density of probability. One cannot determine the wave function of photon but 

can determine the square of the wave function of photon. The density of probability to register the 

photon, the square of the wave function of photon, does not depend on the phase of photon 

.||
22

2

V

b
ee

V

b ii == − φφψ              (7) 

This means that one cannot determine the phase by measuring the energy (frequency) of photons.  

The discreteness of the electromagnetic wave means that one always determines zero phase.   

In quantum mechanics, the Heisenberg uncertainty principle binds coordinate and dynamical 

parameters as  

.
22

hh
≥≥ tpr ε             (8) 

The Heisenberg uncertainty principle forbids to determine at once coordinate and dynamical 

parameters of the quantum wave. When treating electromagnetic wave as a quantum object, the 

time coordinate and the frequency as well as the space coordinate and the wave vector are bound 

with the Heisenberg uncertainty principle as follows from eqs. (6), (8). When detecting the 

electromagnetic wave with the wave vector k  and the frequency ω  one can determine the space 

and time coordinates as 

.
2

1

2

1

ω
== t

k
r              (9) 

The intervals of length and time given by eq. (9) yield the limits of photon as a wave. When 

detecting the photon, the wave properties are restricted by these limits. From this it follows that one 
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cannot determine the travel time and the corresponding phase of photon. It is forbidden by the 

Heisenberg uncertainty principle.  

So when treating electromagnetic field as a quantum wave one cannot determine the travel time and 

the corresponding phase of the electromagnetic field. Then one cannot determine the phase shift in 

the Michelson-Morley experiment. The null result of the Michelson-Morley experiment is trivial 

from the viewpoint of quantum mechanics. So the null result of the Michelson-Morley experiment 

does not favour for the invariance of the electromagnetic field and cannot serve as an evidence for 

the special relativity. Therefore there is no necessity in the Lorentz transformation for the space and 

time to explain the null result of the Michelson-Morley experiment. Then it is reasonable to 

consider electrodynamics in the Euclidean space and absolute time of a preferred reference frame. 

One should use the Galilei transformation for the space and time. The Maxwell-Lorentz equations 

are not invariant under the Galilei transformation. That is electromagnetic field is non-invariant. 

Such an approach was developed in [3-6].  

Note that Marinov [7] determined the velocity of the Earth with respect to a preferred reference 

frame in the one-way experiment utilizing the rotating toothed wheel ahead of the receiver. The 

result of the Marinov experiment supports non-invariance of the electromagnetic field. Note that 

Kholmetskii [8] investigated the problem of invariance for the stationary electromagnetic field. He 

showed theoretically and experimentally that the Faradey induction law is non-invariant. 

Non-invariance of the Maxwell-Lorentz equations under the Galilei transformation means that the  

size of photon and correspondingly the time characterizing photon are shifted in the moving frame 

as   

.
)/1(

)/1(

)/1(

)/1(
2/1222/122 cv

cv
t

cv

cv
r phph

−

−
∝

−

−
∝        (10) 

In view of eqs. (6,9), the momentum and energy of photon are shifted in the moving frame as   
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)/1(
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p phph

−

−
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−

−
∝ ε        (11) 

From eqs. (11) one can deduce relativistic effects for the electromagnetic wave such as Doppler 

effect, Sagnac effect.  

Consider the dynamics of the electron with the charge e  and the mass m  in the electromagnetic 

field with the strength E
r
 [4]. In the frame moving with the velocity v , the acceleration due to the 

electromagnetic force experienced by the electron is given by 

.)/1( 2/122 cv
m

eE
w −=′             (12) 

The following interpretation may be given that the mass of the electron is invariant and the 

electromagnetic field decreases as 2/122 )/1( cvE −∝ . Thus the mass of the electron is invariant that 

provides invariant scale of mass for massive bodies. 

We consider electrodynamics in the Euclidean space and absolute time that provides invariant 

scales of length and time. As follows from eq. (4) the energy of a single photon and the number of 

photons are bound with the Heisenberg uncertainty principle. Depending on the experiment one can 

measure the variation of the energy of the electromagnetic field as a variation of the energy of a 

single photon or as a variation of the number of photons. In the former case one measures the 

Doppler shift for the frequency of the electromagnetic field. In the latter case one measures the 

decrease of the flux of photons, 12/122 )/1()/1( −−−∝ cvcvN , with the energy of a single photon 

being constant. Thus, when measuring the flux of photons, the energy of a single photon is constant 

that provides invariant scale of mass (energy) for the electromagnetic field. 

So we consider electromagnetic field in the Euclidean space and absolute time of a preferred 

reference frame. That is we consider electromagnetic field within the framework of Galilean 

electrodynamics. The scales of length, time and mass are invariant while the electromagnetic field is 

not. Stress once more that we can deal with invariant scales of length, time and mass and non-

invariant electromagnetic field due to the quantum behaviour of the electromagnetic field. 
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When considering electromagnetic field as a quantum wave within the framework of Galilean 

electrodynamics, there is no need in the double standards for the scales of length, time and mass as 

well as for the electromagnetic energy. In this way we make the relativity a verifiable theory. 

It is reasonable to think that relativistic effects pertain only to the energy and momentum of the 

electromagnetic field while the scales of length, time and mass are not relativistic. Then it is 

reasonable to think that electromagnetism is a relativistic phenomenon while gravitation is not. 

Then gravitation should be described within the framework of Newtonian mechanics. Relativistic 

effects in the gravitational potential pertain only to the energy and momentum of the 

electromagnetic field while the scales of length, time and mass do not depend on the gravitational 

potential. 

 

3. Relativistic effects within the framework of newtonian gravity 

So we consider electromagnetic filed in the gravitational potential within the framework of 

Newtonian mechanics. Suppose that electromagnetic wave propagates with the velocity c  with 

respect to a preferred reference frame independently of the gravitational potential. Put the frame 

with gravitational potential Φ  into correspondence with the frame with the velocity v  

Φ= 22v .                (13) 

In view of eq. (11), electromagnetic energy is a function of the gravitational potential  
2/12 )/21( cem Φ−∝ε               (14) 

that yields the gravitational redshift of the electromagnetic field.  

Describe the bending of light in the gravitational potential [9]. Put the gravitational mass into 

correspondence with the electromagnetic energy. Consider the relation between the gravitational 

mass and the electromagnetic energy within the Newtonian mechanics. Put the particle of the mass 

m  moving with the speed of light into correspondence with the electromagnetic field of the energy 

emε . Then the kinetic energy of the particle is equivalent to the electromagnetic energy 

.
2

1 2mcem =ε                (15) 

This means that the electromagnetic field possesses the gravitational mass and can take part in the 

gravitational interaction. The electromagnetic field as a particle of the mass m  suffers the attraction 

of a gravitating body. Let the electromagnetic field move transversely to a gravitating body. At a 

length l∆ , the electromagnetic field acquires the radial momentum due to the gravitational potential 

Φ   

.
2

3rc

l

r

tm
p em
r

Φ∆
=

Φ∆
=∆

ε
           (16) 

The deflection of the electromagnetic field at a length l∆  is given by 

2

2

rc

l

p

pr Φ∆
=

∆
=∆θ              (17) 

wherein we use the expression for the momentum of the electromagnetic field 

.
c

p emε=                 (18) 

We obtain the same result as in the general relativity. Remind [1] that the experimental data support 

this result. Thus the true description of the bending of light by a gravitating body is possible in the 

Newtonian mechanics. 

It is worth to stress that we use the relation between the electromagnetic energy and gravitational 

mass other than that in the general relativity. The well known Einstein relation 2mc=ε  follows 

from the relativistic dynamics [1] based on the interpretation of eq. (12) as an increase of the mass 

of electron. This is just the opposite to the interpretation under consideration. When dealing with 

the ratio of the mass to the electromagnetic field, both interpretations are the same. The Einstein 

relation makes sense only for the ratio of the mass to the electromagnetic field. Then, under the 

considered approach, one can use the relativistic dynamics in the electromagnetic interaction and 
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cannot in the gravitational interaction. When considering the gravitational interaction we should use 

the relation given by eq. (15) instead of the Einstein one. 

 

4. Effective gravity: footprints in the solar system 

So we should describe the motion of the massive bodies in the gravitational potential within the 

Newtonian mechanics. Hence explanation of the anomalous shift of the perihelion of Mercury 

remains open. In [10] the effective gravity is considered which includes the Newtonian potential 

and the fixed potential 

Ψ+−=Φ
r

Gm
              (19) 

with the fixed potential of a gravitating body being  

2

3

4
NSrGρ

π
=Ψ               (20) 

where ρ  is the density of the body, NSr  is the radius of neutron star for the body. At the radius of 

neutron star the fixed potential balances the Newtonian potential. It is worth to note that the fixed 

potential does not modify the Newtonian gravity. The fixed potential produces the outward inertial 

acceleration 

.
r

win
Ψ

=                (21) 

So introduction of the fixed potential Ψ  means the presence of the inertial repelling forces. 

Footprints of the fixed potential of the Sun for a particle orbiting around the Sun may be revealed as 

an anomalous shift of the perihelion of the Keplerian orbit of a particle or as an anomalous shift of 

the frequency of light or as a polarization of the particle's satellite orbit. Although we have the 

rough estimation of the fixed potential of the Sun we can test it by comparing the results of different 

observations. Following [10] we shall consider three consequences of the fixed potential of the Sun: 

the shift (advance) of the perihelion of Mercury, the shift of the frequency of light at the Earth seen 

in ranging of distant spacecraft, and the polarization of the Moon's orbit. 

The shift (advance) of the perihelion of Mercury due to the fixed potential of the Sun per revolution 

is given by 

S

S

Gm

ea Ψ−
≈

)1(6 2π
δϕ              (22) 

where a  is the semi-major axis, e  is the eccentricity, SΨ  is the fixed potential of the Sun, Sm  is 

the mass of the Sun. 

The inertial acceleration due to the fixed potential gives contribution into the first order relativistic 

effect. The inertial acceleration of the Earth Ew  due to the fixed potential of the Sun can be seen in 

ranging of distant spacecraft as a blue shift of the frequency of the electromagnetic field 

SE

SE

cr

t

c

tw Ψ
=≈

∆

ω

ω
             (23) 

where SEr  is the distance between the Earth and Sun. In ranging of distant spacecraft, the 

acceleration of the Earth outward the Sun looks like the acceleration of the spacecraft inward the 

Sun, Esc ww 2= . The factor 2 takes into account that the acceleration of the Earth gives contribution 

into the shift of the reference frequency during the time of two-leg light travel while the 

acceleration of the spacecraft gives contribution into the shift of the observed re-transmitted 

frequency during the time of one-leg light travel. 

The fixed potential of the Sun yields the polarization of the Moon's orbit in the direction of the Sun. 

While adopting the sum SS Ψ+Φ  as a gravitational potential of the Sun at the radius SEr , we reveal 

an additional acceleration of the Moon outward the Earth average for the period of revolution of the 

Moon 
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This can be seen in lunar laser ranging as a first order relativistic effect. 

Compare the above three effects. Determine the fixed potential of the Sun from the data on the 

anomalous shift of the perihelion of Mercury, 43 arcseconds [11]. Then we obtain the value, 
5104.6 ×=ΨS  cm

2
/s
2
. This value yields the effective inertial outward acceleration of the Earth, 

81025.4 −×=Ew  cm/s
2
. This may be interpreted as the inward acceleration of the distant 

spacecraft, 8105.82 −×== Esc ww  cm/s
2
, which is consistent with the observed anomalous inward 

acceleration acting on Pioneer 10 and 11, 810)25.174.8( −×±=Pw  cm/s
2
 [12]. The acceleration of 

the Moon outward the Earth due to the fixed potential of the Sun is equal to =Ψ= ESSM rw 2/  

8100.3 −×  cm/s
2
. This can be seen in lunar laser ranging as a velocity, =Ψ= ESEMSM crrv 2/  

8108.3 −×  cm/s, where EMr  is the distance between the Earth and Moon. There is a difference in the 

rate of the lunar semi-major axis increases obtained from telescopic observations and from lunar 

laser ranging, 29.1=− telLLR aa &&  cm/yr 8101.4 −×=  cm/s [13]. This anomalous increase in the lunar 

semi-major axis is consistent with the acceleration of the Moon outward the Earth due to the fixed 

potential of the Sun. Thus the polarization of the Moon's orbit due to the fixed potential of the Sun 

may explain the anomalous increase in the lunar semi-major axis. So the fixed potential of the Sun 

allows to explain three anomalous phenomena, the anomalous shift of the perihelion of Mercury, 

the anomalous acceleration acting on Pioneer 10, 11, the anomalous increase in the lunar semi-

major axis. 

 

5. Summary 

It is considered electromagnetic field in the Euclidean space and absolute time of a preferred 

reference frame. Electromagnetic wave propagates with the velocity of light independently of the 

velocity of the source. Within the quantum mechanics framework, the Heisenberg uncertainty 

principle restricts the wave properties of the electromagnetic field by the size of photon. This means 

that one cannot determine the travel time and the corresponding phase by measuring the energy 

(frequency) of photons. Within the quantum mechanics framework, one cannot determine the phase 

shift in the Michelson-Morley experiment. Then the null result of the Michelson-Morley experiment 

cannot serve as an evidence for the special relativity. Therefore it is reasonable to refuse from the 

Lorentz transformation and to consider the theory of relativity within the framework of Galilean 

electrodynamics, with the space and time following the Galilei transformation. So we refuse from 

the invariance of the Maxwell-Lorentz equations under the Lorentz transformation then 

electromagnetic field is non-invariant. 

Due to non-invariance of the Maxwell-Lorentz equations under the Galilei transformation the size 

of photon in the moving frame is shifted that results in the corresponding shift of the energy of 

photon. This shift can explain relativistic effects for the electromagnetic wave such as Doppler 

effect, Sagnac effect.  

We consider electrodynamics in the Euclidean space and absolute time that provides invariant 

scales of length and time. When measuring the flux of photons, the energy of a single photon is 

constant while the number of photons is a function of the velocity of the frame. In this case the 

energy of a single photon provides invariant scale of mass. Then one can provide invariant scales of 

length, time and mass in the electrodynamics.  

In the interpretation of relativity under consideration, relativistic effects pertain only to the energy 

and momentum of the electromagnetic field while the scales of length, time and mass are not 

relativistic. We can infer that electromagnetism is a relativistic phenomenon while gravitation is 

not. Gravitation should be described within the framework of Newtonian mechanics. One can 

extend relativistic effects in the moving frame to the frame with the gravitational potential by means 
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of the principle of equivalence. Hence electromagnetic energy is a function of the gravitational 

potential that yields the gravitational redshift of the electromagnetic field. 

Relativistic effects in the gravitational potential pertain only to the energy and momentum of the 

electromagnetic field while the scales of length, time and mass do not depend on the gravitational 

potential. Then the motion of light and massive bodies should be described within the framework of 

Newtonian mechanics. It is given the description of the bending of light in the gravitational 

potential by putting the gravitational mass into correspondence with the electromagnetic energy. It 

is proposed an explanation of the anomalous shift of the perihelion of Mercury with the 

hypothetical fixed potential of the Sun. It is shown that the hypothetical fixed potential of the Sun 

can also explain the anomalous acceleration acting on Pioneer 10, 11 and the anomalous increase in 

the lunar semi-major axis. 
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Properties of the “field ether” 
 

V. N. Yakovkin 
E-mail:yakovkin@bigmir.net 
 
”…Neither will a space in absolute rest endowed with special properties be introduced nor will a 

velocity vector be associated with a point of empty space in which electromagnetic processes take 

place”. (A. Einstein) 
 
Physicists of X1X century successfully used ether to describe various phenomenons. Synthesis of different branches 
followed their development. A yield idea here was using a field concept. A field notation means to join force vector 
with every point. Two adjacent volumes act one at another.  But at what substance the force acts? 
Before the Relativity Theory appeared the Ether was such a substance. It was thought absolute as space. Later the 
Relativity Theory rejected Absolute Ether.   
The “ether” concept regularly recovers, like the Phoenix bird from the ashes, despite of a great number of the 
destructive attacks performed by the relativistic theory. This paper presents the analysis of the Maxwell ether 
properties, which are complemented by the statement of its density dependence from the field. It was shown that the 
“field ether” was pulled into the area of higher field strain increasing its own density and hence increasing it dielectric 
permeability ε. Field ether of electromagnetic wave exists as ensemble of jets. So it is not absolute and it can not be 
used as a frame of references.  

 

1. Introduction 
J. C. Maxwell based his electromagnetic theory on the coincidence of the equations for motion of 
fluids under hydrodynamic pressure, and equations describing charges and currents behavior in the 
field of magnetic or electric forces. He stated that the ether has certain mechanical and electrical 
properties [1– 4]. Later, The Relativity Theory washed out these electrodynamics foundations. 
Nevertheless physicists working in various areas keep trying to involve some ether concepts for 
fine effects analysis. Modern electrodynamics rejects the ether for it is yet absolute. Than, classical 
electrodynamics was not capable to analyze micro scale processes due to linear deformations of 
Maxwell ether.  It seems quite natural to revise old ether concept from the modern point of view.  
 

2. Ether density distribution 
According to the modern notion electromagnetic field (EMF) is a simple independent substance 
that “cannot be reduced to anything simpler” [5].  “After spreading far from it source field gains 
own character” [6]. If dielectric and magnetic permeability εv = µv =1 EMF follows to the linear 
Maxwell equations:  

rot E = -∂B/∂t               (1) 
rot H = ∂D/∂t.               (2) 

However the wave process, that is characterized by conversion the magnetic flow changes into 
electric field vortexes and vise versa, does not occur in the empty space but within small region of 
the space where certain energy density w are present. The fact that we cannot picture clearly the 
medium required for the vortexes conversions should not lead to the denial of this medium 
existence.  The region where Maxwell’s transmutations occur is filled in by the substance which 
could be named by various terms: ether, field substance, or “physical vacuum”. The expressions (1) 
and (2) are valid only for the regions where w ≠ 0. Furthermore the wave spreading does not 
require this substance occurring everywhere outside. It is sufficient enough to have ether bunch 
traveling synchronously with the spreading of the wave train. 
So, how such ether is distributed over the space? Let’s chose for simplicity “attendant” coordinates. 
That allows us to take account of electric field only. Then following to the Maxwell idea we 
assume if empty space has energy DE is concentrated in the ether. Ether mass density τ is  

τ = DE/c2.                (3) 
We can imagine that when some source generates a field, at first there is an extrusion of the jet 
stream of ether, which occurs to be polarized instantly.  Let’s name such substance as “field ether” 
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in order to distinguish it from uniform ether medium of XIX century. Figuratively speaking, every 
beam of light uses it own jet of ether. This extremely important statement of the ether localization 
and flow opens new approached to the problem of compatibility the ether concept and the 
principles of Relativity Theory.  It is reasonable to stress out that in the analysis of weighty matter 
motion the ”field ether” cannot be used any more as a base for the universal frame of references. 
Introduction of the localized ether concept appears to be a significant base for the rationality in 
using the simultaneity definition given by Einstein as well as in interpretation of the local time 
concept. 
Suggested concept of the ether demands corresponding corrections to some classical 
electrodynamics equations. The ether theory and Lorenz electronic theory produce different 
expressions for the bulk force that follows from the Maxwell tension tensor [7] 

Tαβ = EαDβ – 0.5δαβEγDγ + HαBβ – 0.5δαβHγBγ        (4) 
Tension tensor divergence determines some bulk force that could be recorded as 

∂Tαβ/∂xβ = [Fev + ∂[D,B] /∂t ] α.           (5) 
Fev is force acting on non-uniform bodies, charges and currents; the second term that remains in 
emptiness is pro rata to the derivative of the Poynting vector. In XIX century this was understood 
as the field effect at the ether. But it caused a perplexity after the ether concept rejection: it was not 
possible to understand, what this force is acting on.  Since the only force that should be acting in 
electrodynamics in a substance absence is the Lorenz force, the Relativity Theory demands was 
satisfied by voluntary replacement “+” sign by the “-” sign [7]. In the model with field ether it is 
acceptable to leave “+” sign in (5).  
From equations (1) and (2)  could be derived the expression 

div[E,H] = -(H,∂B/∂t) - (E,∂D/∂t)          (6) 
that represents the local energy conservation law [7,9] 

divσ = - ∂w/∂t.               (7) 
We rewrite it in order to provide it with new physical sense using for right side   

τ =  (1/2)(εεoE
2 + µµoH

2)/с2.            (8) 
For plane monochromatic wave the mean value of the Poynting vector is equal to the mean value of 
energy density that is multiplied by speed vector u,  [7] 

σm=wmu=τmc2
u.              (9) 

If designated region is so small that within its boundaries the τ is constant, we can omit the mean 
subscript. This all allows us to rewrite the energy conservation law (6) in terms of continuity 
equation, which wide scale application in hydromechanics is related to the fluids’ continuousness;   

div(τ u) = - ∂τ/∂t,             (10) 
The important conclusion follows from the last equation: ether maintains its own continuity. The 
polarized ether in this respect behaves like a liquid, the particles of which are attracting each other. 
For the narrow light beam these forces prevent the ether stream disintegration. Furthermore, 
interaction of the ether streams combines it into a single whole substance spread over the space. 
Since at least weak field exists at any pint of space, the ether is present everywhere, while its 
density beyond the stream is extremely small, the adhesive forces are correspondingly insignificant.  
In this meaning the ether is ubiquitous, while its density is significantly changeable through the 
space as well as over the time. Given ether interpretation helps us to change our notation of the 
“physical vacuum” of quantum electrodynamics:  vacuum is also moveable and consists of separate 
dense jets bounded by rare component. 
 

3. Bases for quantitative description of the “field” ether 
J. Maxwell [3,§15] pointed out that parts of the ether are polarized,  elastically bounded, and field 
forces can cause their displacement. We assume that ether possesses only dielectric properties and 
does not dissipate energy. Than according to the Kramers-Kronig expressions ε(ω)=const. So it is 
enough to examine only how ether’s dielectric permeability ε depends on static electric field 
strength Е. Let’s use two typical electrostatic problems to illustrate ether density distribution: the 
field of the point charge q, and the field of the endless straight uniformly charged wire with а linear 
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charge density λ («linear charge»). Studying interaction of the ether fragments, Maxwell [4,§59] 
concluded that “ether medium should be in the state of mechanical stress” that causes “charged 
bodies’ motion”. Since ether fragments are capable to be polarized and to gain the dipole moment 
depending from E, two adjacent fragments located along the field line are appeared to be polarized 
in the same direction, hence they attract each other. Mutual attraction of the neighbor fragments is 
give rise to the pressure that one fragment produces on another.  Sequent, compressing forces are 
acting on the every ether fragment. Bearing in mind the existence of spherical or cylindrical 
symmetry in the chosen example problems, we can state the existence of pressure gradient in these 
cases. Due to the charge field action the ether fragments displace toward the center producing the 
gradient of ether density directed toward the charge. This mechanism of compression is similar to 
the known processes in material mediums that result in compacting of a liquid material dielectric 
caused by electrostriction and drawing this dielectric into the places with higher electric field 
strength.  
Then we can notice that displacement of a separate ether fragment towards the center and its 
compression are followed by the growth of “counter-field” strength as compression results in the 
increase of field lines density. So ether compression (like material medium compression) produces 
its polarization growth, hence it reduces external field effect. Usually such response of a medium is 
interpreted as increase in its dielectric permeability ε. The process in electrostatic field, resulting in 
the increase of dielectric permeability due to medium compression and growth of its polarization, 
will be called as “field reduction” effect. Field reduction typical for dielectric materials differs from 
the shielding caused by free mobile charges and observed in conductors. The field reduction effect 
is known also in the quantum theory. It is used for example in the analysis of the interaction 
between an electron and external electrostatic field in the “physical vacuum”. Right after the virtual 
е - р pair springing up, the polarization of this pair by the electron occurs: real electron attracts 
virtual positrons of “vacuum” and repels virtual electrons. The electron is appeared to be covered 
by the layer made of the positrons originated from virtual pairs; the displacement of the elements of 
these pairs is termed as “physical vacuum” polarization. The size of polarization region is 
comparable by order with the Compton Wavelength (λе = 2.43·10-12м). The last case should be 
rather termed as field reduction, than electron screening and its effective charge reduction.  
It does not matter, how to call the substance responsible for the field interactions, ether or 
“vacuum”, it is important that its polarization leads to the field reduction.  
Thus the task is simplified to the analysis of electrostatic field forces acting on the ether fragments 
that have dielectric nature and can be polarized, deformed and displaced by the forces action. 
 

4. Ether dielectric permeability 
The external electrostatic field bulk force fdv acting on the volume part dv of dielectric substance 
could be derived from the math expression for the work done on the field energy change  

δU = ∫E⋅⋅⋅⋅δDdv.              (11) 
Existence of the slow virtual dielectric flows are usually assumed  for the forces calculation [5-7], 
where the work done by the external forces over each fragment is taken to be equal to the scalar 
product of the bulk force f by the slow speed u of its flow. The rate of the field free energy change 
at the virtual ether flow can be express as  

dU/dt = - ∫(u⋅⋅⋅⋅f)dv.              (12) 
Using the calculation procedure [6,7], which is typical for electrostatics problems, we have to 
convert  (11) to appearance (12).  Energy changes occur only when dielectric permeability εεεε ≠ 1.  
Total energy change could be determined by the integration over the whole volume in the frame of 
references related to the charge  

δU = ∫ (E2D2-E1D1)dv.             (13) 
Taking in the consideration field symmetry and using for the normal component of induction vector 
the obvious equation D1 = D2 (since regardless to the flow, the distance between center of gravity 
of the element dv and the charge remains constant) we can state that 

δU = ∫ (E2D1-E1D2)dv  = - εo∫(ε2-ε1)E2E1dv.       (14) 
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 AsE2 - E1<< E1, E2; ε2-ε1<<ε1,ε2  
dU/dt = - εo∫ E2(∂ε/∂t)dv.            (15) 

If perform several rearrangements (see attachment), switch from ether density to the pressure, and 
equate the obtained bulk force to the pressure gradient, then we can derive from (15) the 
differential equation 

(1/p) ∂p/∂r = εo∂ (E2(dε/dp))/∂r.           (16) 
Growth of ε leads to the decrease of separate ether fragment energy (U ∼ 1/ε). As a result, it 
becomes energetically more beneficial for a separate fragment to be drawn in the higher strength 
field region. Such ethers’ characteristic was specified by Maxwell particularly [4].  
To integrate the equation (16) I assume that   

ε = 1 + p/Y.               (17) 
We suppose that Y is the universal constant which characterizes the field reduction degree as a 
result of ether compression. Let’s name the constant Y as baro-reduction ether module. Replacing  
ε in (16) via (17) results in 

∂(lnp)/∂r = εo∂ (E2
/Y)/∂r.            (18) 

We use for (18) well known expressions for the fields of the point charge q or (and) of the 
uniformly distributed along the infinite straight line charge with a linear density λ. 

Es = q/4πεoεsr
2               (19a) 

Ec = λ/2πεoεcr               (19b) 
After integration and substitution р by ε we receive for the spherically or cylindrically symmetrical 
fields:  

ln(εs- 1) – ln(εstart – 1) = q2/ Y16π2εoεs
2r4         (20a) 

ln(εc- 1) – ln(εstart – 1) = λ2/ Y4π2εoεc
2r2.        (20b) 

Here ln(εstart-1) is used as a constant of integration which equals to the  ε value at the significantly 
remote point. We can ignore this constant of integration if analysis will be limited by the internal 
field regions where pressure and dielectric permittivity reach the large values (ε>>2). This 
approach gives us the formulas  

ln(εs- 1) = q2/Y16π2εoεs
2r4.            (21a) 

ln(εc- 1) = λ2/Y4π2εoεc
2r2.            (21b)  

Unfortunately formulas (21) could not be recorded in the form of obvious dependency ε = f(r), but 
assigning different values to ε (starting from ε=2), we can unambiguously receive corresponding 
values of r. To carry on calculations we need to know module Y and assign q and λ. There are no 
experimental data for the non-linear interaction of the electrostatics fields in vacuum. Let’s take, 
however, that Y is universal ether characteristic independent from the experimental conditions. I 
estimated Y module by extrapolation summative experimental data [10,11] for depressive non-
linearity for several isotropic and crystal optical mediums, that are represented on the Figure 1. 
There ñ2 (cm2

/kW) is the field depended non-linear coefficient of increment to the real part of light 
refraction index, and τnl is the time for non-linear response establishment.  

 
Fig. 1. Extrapolation of data and estimation of module Y. 
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We can use interdependences from [10] to rewrite the well-known in non-linear optics dependence 
of the refraction index n from the field strain amplitude module Ã : 

ε = n2 ≈ no
2 + ñ2Ã2(3/4π),           (22) 

 no is the refraction index for small light intensity. The (3/4π) factor makes an account on the fact 
that ñ2 on the Figure 1 is expressed in cm2/kW while Ã is in the CGSE units. For the fields 
interaction in empty space (no= 1), using (17), (22), and (А6), we can receive the expression 

1/Y  =  [6 /(2ε-1)] ñ2.             (23) 
According to the phenomenological theory concepts for a certain refraction index the coefficient of 
increment ñ2 grows when the time for non-linear response establishment increases. 
Correspondingly, the data for non-linear coefficient ñ2 for number of optically active materials on 
the Figure 1 are grouped by means of the straight lines family with the same slope with optical 
density used as a parameter. In order to estimate the coefficient ñ2 for the non-linear interaction of 
light with light in empty space we need to extrapolate the encompassing dependencies [10,11] of 
non-linear response ñ2 to the time for non-linear response establishment 10-15с. As far as at “zero” 
field strength the optical density of ether is smaller than for any optical material, the dependence 
for ñ2 from τnl corresponding to the value no=1 should be used. Therefore the additional straight 
line with the same slope is plotted on this graph lower on one repeating period of the bordering 
straight lines. (There is some arbitrariness on this step, but we can hope that the estimation will not 
be far from the real value). According to these data, the ether non-linear coefficient ñ2 equals to 
3·10-21 cm2/kW; and correspondingly for this value  

Y  ≈ 1019 N/м2               (24)  
In order to compute by formulas (21) radius r for a given value of ε we have to set charge value q 
and linear density λ. We choose the point charge to be equal to the charge of an electron q = 1.6⋅10-

19 Q. For the linear distribution we assume that straight infinite line wire has the same charge 
spread over the length equal to the first Bohr’s orbit (2π⋅0.5⋅10-10m), which correspond to the λ = 
0.482·10-9 Q/m. Then we group all constants in the separate co-factors (correspondingly, for the 
spherical and cylindrical field symmetry):  

R s
 4 = q2/Y16π2εo ≈ 1.834·10-48

 м4          (25а) 
R c

 2 = λ2/Y4π2εo ≈ 0.665·10-26
 м2

.          (25b) 
Now the expressions (21а), (21б) take an appearance 

r s 
-2  =  Rs

-2ε s √√√√ln(εs - 1).            (26а) 
r c 

-1  =  R c
-1ε c√√√√ln(εc - 1).            (26b) 

It is obvious that Rs and Rс are certain critical lengths that determine areas for the change of the 
permeability dependence character from radius ε(r). Indeed, each of the dependencies (26а) or 
(26b) contains the product of two functions that have different rhythm of changes.  
Correspondingly graphs lg(ε) - lg(1/r) (on the Figures 2,3 distances are shown in cm) have two 
regions.                             

 
Fig.2. Ether dielectric permeability and potential for point charge. 
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 For r>R the logarithmic component plays the key role in (26), while closer to the center – the law 
ε(r) is determined by factor 1/rs

2 (sphere) or 1/rc (cylinder). In both cases as ether compression 
increases, its dielectric permeability grows and reaches the value of ε ∼105 on the distance rc∼ 10-19 

m or rs∼ 10-15 m. Let’s name the spherical or cylindrical zone of radius R starting from which ε 
rapidly grows as “reduction zone”.  Note that for q = 1.6·10-19 Q the radius of the spherical 
“reduction zone” is about Rs ∼ 10-12 м = 1pm, which is close to the Compton Wavelength of 
electron. For linear distributed charge this distance can be estimated as Rc ∼ 0.8·10-13 м. 
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Fig. 3. Ether dielectric permeability and potential for linear distributed charge. 

 
The type of dependence of the field potential from distance is also of great interest. The effect of 
field “reduction” resulting from the ether thickening allows to get rid of the overwhelming over 
classical electrodynamics infinite point charge energy phantom. Potential is defied as a work done 
for displacement of the unit sample charge 

ϕ = ∫Еdr.               (27) 
The result of numerical integration by (27) is presented on the Figures 2, 3. If one have ignored the 
“reduction” effect and left ε= 1 he would receive the straight line with a slope 1/r that results in 
ϕ→∞ at r→0. But, according to the graph, the potential is growing if distance decreases, while in 
the range of distances rs ~ rc = 10-14…10-16 m the ϕ value goes to the saturation level. The filed E 
inside the selected spherical or cylindrical region with radius rcr ~10-15 m is limited, i.e. the charge 
is blocking itself out. A zone inside which the field becomes constant, i.e. where the complete field 
reduction occurs, will be called for short as “micro-block”.  It is interesting to note that in both 
cases we get the same magnitude of  “micro-block” radius ~10-15 m though at the edge of 
cylindrical “micro-block” permeability reaches only ε =38 (as we mentioned at the edge of point 
charge “micro-block” ε ∼105). Please note, that in the ϕ value computing we did not use any 
arbitrary value for any physical parameter (for the only one theory parameter Y we took the value 
resulting from extrapolation of the dependencies originated from non-linear optics). Nevertheless 
the main dependence for dielectric permeability (21) helped us to determine two distances that are 
often used in the quantum electrodynamics: “micro-block” radius coinciding by the order of 
magnitude with “classical electron radius” 2·10-15m. “Reduction zone” radius Rs = 10-12 m is close 
to the specific length of the polarization region for “physical vacuum”, i.e. to the order of 
magnitude of the Compton Wavelength for electron λе = 2.43·10-12m. In spite of different symmetry 
and great slopes ε(r) distinction both cases shows almost the same magnitudes of “reduction zone” 
and “micro-block” radii. 
 

5. Conclusion 
The space devoid of omnipresent substance is demanded for relativity theory. To adjust this 
standing with medium necessity for Maxwell’s equations it is assumed that ether density is 
proportional to the field energy density. It is supposed that ether has properties of a dielectric 
medium that could be polarized, elastically deformed and displaced by electrical forces. It is shown 
that the ether follows to the continuity equation and behaves like liquid. It is inferred that ether 
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should inevitably compress itself, increasing its density.  Dielectric permeability enlarged 
especially rapid inside so-called “reduction zone” with radius R∼10-12 m. So inside microscopic 
bulks ether behavior is to be described by non-linear equations. At the distance ∼ 10-15m from point 
static charge dielectric permeability rises to ε ∼105. 
 Due the “reduction effect” electrostatic field is forming from itself a special region (“micro-
block”) with radius ∼10-15m, within which the potential is limited and field blocks itself up. For the 
linearly distributed charge the radius of the “reduction zone” is approximately the same.  
“Field ether” of free EMF exists as ensemble of separate jets. The attraction that acts between jets 
is very slight, but it allows us to say that ether is omnipresent. It is obvious that uniform physical 
vacuum contradicts the relativity theory, so its density is also altering.  
The statement of the ether concentration and flow opens new approached to the problem of the 
ether concept compatibility with the principles of Relativity Theory.  It is reasonable to stress out 
that in the analysis of weighty matter motion the ”field ether” cannot be used as a base for the 
universal frame of references. Introduction of the ether concentrated jets concept appears to be a 
significant base for the rationality in accounting for the simultaneity definition given by Einstein as 
well as in interpretation of the local time notion.  
 

Attachment 

To perform several rearrangements in (15) we use ε and τ functional dependences from velocity 
vector u   

dε/dt = ∂ε⁄∂t + (u gradε),            (A1) 
dτ/dt  = ∂τ/∂t + (u.

gradτ),            (A2) 
and 

dε/dt = (dε/dτ)(dτ/dt).            (A3)  
Using (10) one can get from (A2) 

dτ/dt  =  - div(uτ) + (u.
gradτ),           (A4) 

or 
dτ/dt  =  - τdiv(u).             (A5) 

To switch from ether density to the pressure one could express p from Maxwell’s formula   
T = p = εoE

2(2ε-1).            (A6) 
After dividing (A6) by (3) one get 

p /τ = (2ε-1)c2/2ε = c2(1- 1/2ε).           (A7) 
On neglecting by dependence p(ε) one can  get 

dτ/dt  =  - τdiv(u) = (dτ/dp)(dp/dt) ≈ (dp/dt)/ c2(1- 1/2ε), and  dp/dt = -p⋅divu.   (A8)  
So one can rewrite (А2) as 

∂ε⁄∂t = - (u gradε) + dε/dt = - (u gradε) + (dε/dp)(dp/dt) =- (u gradε) - p⋅(dε/dp)divu.   (A9) 
It is necessary to take u out of parenthesis. So we rewrite second term in (A9), multiplied by Е2  

E
2p(dε/dp)divu=div(E2p(dε/dp)u)–u⋅⋅⋅⋅grad(E2p(dε/dp)).    (A10) 

Than using Gauss’s theorem one can see that div is vanishing at infinity. Finally (11) takes an 
appearance   

dU/dt = - εo∫u{grad(E2p(dε/dp)) – E2
gradε}dv.       (A11) 

So 
f = εograd(E2p(dε/dp)) – εoE

2
gradε.          (A12) 

Now we equate the obtained bulk force to the pressure gradient  
gradp = εograd(E2p(dε/dp)) – εoE

2
gradε.        (A13) 

 Or 
(1/p)gradp = εograd(E2(dε/dp)) .         (A14) 

Due to the symmetry of the field one can write 
(1/p) ∂p/∂r = εo∂ (E2(dε/dp))/∂r.          (A15) 
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In given paper it has been  shown that there is a deep connection between inequalities of  quantum physics  

∆р∆х ≤ h and  relativity theory  v≤c .      

 

The explanation of nature of Heisenberg uncertainty principles is of a great interest. It can be 

understudied, gone without saying, if we will turn out attention to philosophical conceptions of 

perception, reflection and observation [1]. The famous physicist Wigner has written [2] that in order 

to obtain full scientific knowledge it is necessary to understand more deep the observation and 

perception processes. The perception as “visual thinking” arises in consequence of spontaneous (as 

it is) influence of objects of real world to our sensual organs. This form of cognition is main and 

point of departure in cognition process. But some physicist account that scientific cognition is to 

obtain only objective knowledge existing out of separate individual, for example, some scientific 

text. One can answer by means of following Wigner’s notice:”The separation our perception and 

law of nature is no more than simplification. Although we are convinced of it is of harmless 

character but nevertheless we ought not to forget about it”. The perception is the whole (integer) 

reflection of objects, phenomena, events in consequence of spontaneous influence to sensual 

organs.  But is the perception of micro world whole? It is not, of course! Invisible world of micro 

particles can’t spontaneously, directly affect to our organs and therefore it is perceived by means of 

devices. Of course, the result of it is no whole reflection to consciousness of man. It is important to 

agree that the observation in macro world, for example, sunrise and the observation in micro world, 

for example, the changing some numbers on the device aren’t the same. The understanding of what, 

how process is behind of these numbers on the device depends on the level of scientific knowledge 

of man. Thus the perception of macro world by man doesn’t depend on standard of scientific 

knowledge but that of micro world does. As it is known from philosophy the scientific knowledge is 

the reflection of objective characteristics of reality to man’s consciousness. Therefore the level of 

scientific knowledge depends on the level of reflection. From philosophy it is known that different 

forms and levels are presented by various kinds and levels of consciousness. The end therefore the 

perception of micro world depends on consciousness of man. That is why the consciousness of 

observer takes place in quantum mechanics. More full knowledge about which has been written by 

Wigner demands not to consider separately the physical phenomena and phenomena of thinking, 

consciousness. As Wigner has written the decisive step to such knowledge is to establish the limit 

of our ability to percept surrounding world.  It is clear that this limit is finished by perception of our 

world – macro world that we see, hear, and fell. In fact the whole perception of macro world  results 

in that there is no uncertainties at determining  impulse p and coordinate x  of particle, i.e. ∆p and 

∆x equal 0 and therefore ∆p∆x=0, more exactly ∆p∆x ≤ h . The famous philosopher Hegel would 

say that such being is being as it is [3]. Being as it is because it is perceived directly from our 

sensual organs. The no whole perception of micro world  results in that there is  uncertainties at 

determining  impulse p and coordinate x  of particle, i.e. ∆p and ∆x don’t equal 0, more than 0 and 

therefore ∆p∆x>0. The more exact quantitative  tie between ∆p and∆x was established by 

Heisenberg, i.e. ∆p∆x≥h. This inequality shows us where the perception of micro world began and 

plank constant  h is that limit about that Wigner says above and that corresponding our ability 

perceive the surrounding world.   

 Thus if ∆p∆x ≤ h then the surrounding world is perceived by us habitually (usually), i.e. 

simplify and this world is macro world and applicable physics is the classical physics. On the 



343 

contrary if ∆p∆x ≥h then the surrounding world is perceived by us unhabitually (unusually), i.e. 

there is a ambiguity and such world is micro world and applicable physics is the quantum physics. 

The just ambiguous perception of micro world results in that the perception become another. The 

various perceptions mean different forms and levels of reflection which, as it is mentioned above, 

are presented by various kinds and levels of consciousness. Therefore in the micro world observer’s 

consciousness is differed from one in the macro world, i.e. from usual consciousness and this 

difference results in that the consciousness must be accounted and, in reality, it is accounted in the 

quantum mechanics. Is there another, with the exception of Plank constant h, limit corresponding 

our ability perceive the surrounding world? Yes, there is and it is a velocity of light c. From the 

philosophy it is known that space and time are apriori forms of  contemplation [4]. The 

development of the relativity theory results in such conclusions that following from experiments 

objective properties of space and time are reflected just by Lorentz transformations. Therefore the 

principal postulates of this theory says us that any physical law must satisfy Lorentz 

transformations and if v≥c then Lorentz transformations lose me sense. Therefore always the body 

motion velocity v≤c. Hegel would say that it is mediocre essence. One is mediocre because we do 

its such, suitable for us. Thus if v≥c then the objective properties of space and time are lost and it 

means loss of our ability to contemplate the world around, i.e. in this case there isn’t a experience. 

Is there a connection between the inequalities of quantum mechanics ∆р∆х≤h and relativity theory  

v≤c ?   

 Any physicist will not argue that the source of knowledge is an experience. But is knowledge 

product only experience? Empiricism accounts that it is true. No knowledge without feelings and 

experience can arise (R.Bekon). Rationalism considers that it isn’t true.  Only the intellect (mind) 

can give knowledge generality and necessity (Dekart).  Kant of genius taking none of them side, but 

between them, understanding that the reason can not contemplate and the sense can’t think have 

said the following. 1) the experience have unfinished character, 2) the mind perfect knowledge [4]. 

Usually we account that the experience consist of only aposteriori elements. In it Kant sees its 

incompleteness. Kant has said that if we want to give experience finished character then we must 

announce that the experience consist of  both the aposteriori elements and apriori elements. 

Aposteriori elements are sensations which we receive after experience. But what will be an 

aprioristic element of experience? Kant has understood that it is not sensations which as result of 

influence must be only aposteriori. He has understood that this element is necessarily connected 

with consciousness of the person, namely with speculation, contemplation. As it is known from 

philosophy the contemplation is the direct relation consciousness to the object. It seems us that 

direct relation consciousness to the object takes place in only case when the object appear us. But 

Kant has said that it is empirical contemplation. In order to understand what contemplation is and to 

separate from it the apriori contemplation Kant has introduced the following conception: 

phenomenon, substance, form, space and time. What appeared us is the object of empirical 

contemplation. In the phenomena Kant has differed substance and form. The matter of phenomenon 

is the sensations or variety of sensations. This variety is organized and regulated by mean of form 

of phenomenon, i.e. contemplation. It is appropriate to note once more that Kant has postulated that 

the reason can not contemplate and therefore, unlike Dekart, he has accounted that the 

contemplation must be only sensual. Kant has said that contemplation is important moment of the 

sensuality and as for as apriori contemplation is no sensual sensuality. Kant has accounted that 

contemplations are both real and ideal. The contemplations are real because they give a chance to 

be experience. The contemplations are ideal because they exist before experience. In fact, there 

must be this property (apriori contemplation) in the subject in order to arise the direct notion about 

object in consequence the influence of object on subject. If this property would absent in subject 

then the influence will not equal to the notion. But what are forms of apriority contemplation?  Kant 

has accounted that it is space and time. Being in form of “pure contemplation” they already take 

place in the soul in the ready-made condition. By means of them (space and time) it is organized the 

first given to us appearance. In other words, it is come, appeared us what is organized by means of 

space and time. One can say that experience as paste is laid in the ready cake size(mould) or as 



344 

waves some of which can be received by the receiver. Therefore Kant says that it is cognized what 

is come, appeared, but they aren’t “things-in-themselves”. “Things-in-themselves” take place 

behind the limit (boundary) of the contemplation and therefore it isn’t cognized by us. It testifies 

about boundary of our cognition. Kant of genius has known that knowledge going out experience is 

possible. In other words, the paste that is not laid in the ready cake size(mould) or the waves some 

of which can’t be received by the receiver. Thus first of all Kant has put the problem of existence 

knowledge in two forms – the empirical knowledge (into experience) and the theoretical knowledge 

(out of experience). He has said that the theoretical knowledge – knowledge without contemplation, 

knowledge about objects comprehended by mind (Kant called them noumens) is possible. But this 

knowledge never can be original, general. Kant has written:” The contemplation ties sensual 

impressions and creates from them the phenomenon: the phenomena are product of our 

contemplation and object of the mind (reason). The mind connects phenomena and creates from 

them the cognition…” So, the sensual impressions are tied by the contemplation whose apriori 

forms (space and time) are in our soul, intellect in ready-made condition. But which space and 

time? This question isn’t put by Kant because at past it was known only one geometry – geometry 

of Evklid. Therefore Kant has accounted that it is euklidean space. He has emphasized once for all 

that without fail our intellect organize our space sensations in accordance with law of euklidean 

geometry. Kant was convinced  that our mind already owing forms of euklidean space lays them on 

received sensual impressions which after that are organized, regulated by  the ready schemes. These 

schemes are apriori synthetic knowledge, for example such statement as “straight line is the shortest 

distance between two points” or “the plane is determined by three points which isn’t on the straight 

line” or famous euklidean axiom about parallel lines are automatically put in our intellect [5].  

However from appearance other geometries – geometry of Lobachevski, Riman  etc. it is clear that 

these schemes can be quite another. Therefore the question: “What kind of space and time is in our 

soul, intellect?” becomes very interesting. It is very interesting what Kant would say if he knew 

about these geometries consequently another kind of spice and time – other forms of apriority 

contemplation. Maybe, he would say that form of apriority contemplation with which we deal in our 

direct experience is the usual for us space and time – evklidean space. But if there are other forms 

of apriority contemplation – unusual  for us space and time, then by means of them can be 

organized such way of the first given to us appearance that doesn’t come directly to us in 

experience, but come to us through devices (instruments, apparatus). The question, that knowledge 

is possible in this case, can be answered by modern philosophers words [6] : ”… it is also possible 

real knowledge about such objects which aren’t directly given in our human experience. With such 

objects are dealt both modern micro physics and cosmology”. In other words, one can contemplate 

object that don’t  come tj us in direct experience and giving of this object will be organized by 

another way – another space and time. In fact, in the relativity theory another form of apriori 

contemplation is the space of Minkovski, Finsler, etc. As it was said above, the followed from 

experiments objective properties of space and time are reflected by Lorentz transformations. In 

order that these transformations are carried out it is necessary that v≤c. Thus, in spite of space of 

Minkovski, Finsler are quite another form of apriority contemplation nevertheless they have 

objective properties, but unlike usual space and time, i.e. euklidean space, they satisfy non Halliley 

transformations, but Lorentz  transformations. It is clear that if v≥c then objective properties of 

space and time are lost. But what does mean the objective properties of space and time from more 

deep point of view. That is the properties of such space and time which are concerned to the usual 

contemplation. But what is unusual contemplation? The unusual contemplation is the unusual 

relation of consciousness to the object and therefore unusual way of the first given to us appearance 

which is already organized no just another bur unusual form of apriority contemplation. In this case 

the space and time have non objective properties, i.e. properties not following from our 

experiments. Is the knowledge possible in this case? Kant would answer this question that not, 

because the knowledge coming out boundary of experience can’t be actual. Therefore it will be 

better if one is limited by experience – directly ore non directly one. However Hegel would say that 

knowledge not only can but also must go out boundary of experience because in only this case we 
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can understand essence of being. Thus we have analyzed the notions of space and time from 

philosophical point of view. In the relativity theory the notions of space and time are important. 

According to this theory the objective properties of  space  and time take place in case when v≤c. 

Also from philosophical point of view we have considered the problems connected with perception 

[7]. We have understood that when we don’t deal with  direct experience i.e. micro world  then 

reflection is differed from usual reflection. This no whole reflection, perception was tied with 

Heisenberg uncertainty principles (∆р∆х ≤ h). The perception and the contemplation are deeply 

connected with each other. In fact, as it is spoken above by means of contemplation apriority from 

of which is space and time it is appear direct notion about object. The notion is connected with 

perception because the notion (image) is form of early perceived object or phenomena. So, the 

space and time are kinds of perception. Therefore one can say that inequalities ∆р∆х ≤ h and  v≤c  

are connected with each other and this connection is the evidence of unity of micro and macro 

words laws. It is very interesting to remember the following. At past Hegel has said that  mediocre 

essence (here v≤c) and direct being (∆р∆х ≤ h) separately taken not yet keep real knowledge about 

object. The essence and  the being must be considered in connection with each other, in such  one 

when from essence  it is explained its phenomena or the being. Thus let’s consider the following 

connection:   

1)   ∆р∆х ≤ h  and  v≤c . This case  correspond to no relativistic macro world. Here, as Hegel said, 

the direct being and the mediocre essence  

2)   ∆р∆х ≥ h  and  v≤c . This case  correspond to no relativistic micro world. 

3)  ∆р∆х ≤ h and v≥c . This case  isn’t possible. Here, the unusual contemplation of perceived 

macro world take place. This fact is postulated by the relativity theory too. 

4)  ∆р∆х  ≥h  and  v≥c . This case  is  possible. Here, the unusual contemplation of no wholly 

perceived micro world take place.  

 Thus, in case 3) we see that philosophy confirm the conclusion of relativity theory about body 

motion velocity. Sometimes the philosophy can draw a conclusion before the natural science do it. 

For example, in 1846 Kant wrote that three dimensionality of our space follows from character of  

Newton’s law of universal gravitation. It is quite true, but it is proved by physicists no sooner than 

many years after. Kant has confirmed that from another law of gravitation would follow another 

structure of space, another number of measurements and if it is really possible then it is probably 

the God arrange it somewhere. From philosophical point of view it is very interesting the case 4). 

This case is just that case which, as Kant considered, go out the limit of experience. Here, the 

knowledge going out the boundary of experience can’t be true. Therefore in Kant’s philosophy the 

case 4) doesn’t take place. However in Hegel’s philosophy this case not only take place but also 

attract his attention. Here, the knowledge not only can, but must go out the boundary of experience 

because in just this case we can comprehend the essence of things. 

 Let’s consider the case 1), when ∆р∆х ≤ h  and  v≤c . Let’s assume х= vt.  However it isn’t 

supposed that movement is uniform, i.e. ∆v≠0 and vttvx ∆+∆=∆ . We are distinguishing from each 

other observers which is moving and which is rest or one can say that system in which the 

measurements take place is moving and that is rest. So, hvttvvm ≤∆+∆∆ )( . Hence, 

t
t

v

tvm

h
v

∆
∆

−
∆∆

≤ . On the another hand, v≤c . Therefore t
t

v

tvm

h

∆
∆

−
∆∆

= с. Consequently, 

0)( 2 =−∆∆+∆
m

h
vtcvt . Let's find the solutions ∆v of this quadratic equation. So, 

t

Dtc
v

2
)( 2,1

±∆−
=∆ ,  where 

m

ht
tcD

4
)( 22 +∆= . It is clear that solution ∆v2≤0 doesn’t our 

conditions. We take an interest in ∆v1≥0 solution and therefore ∆v=
t

Dtc

2

+∆−
=  



346 

t

m

ht
tctc

2

4
)( 22 +∆+∆−

 (1). As it is clear, in macro world in determining the velocity ∆v there is a 

uncertainty. But in which phenomenon of macro world we can see this uncertainty, but not 

perceiving it as uncertainty?  It is clear that this phenomenon must be kinematics. The kinematics is 

the part of mechanics in which the geometrical motion of body is being studied. Therefore in the 

kinematics the space and time are principal notions. As it was said above, the space and time are 

various kind of perception. It is known that Dopler’s effect is the phenomenon of kinematics. 

Directly perceived by us this effect is Dopler effect in acoustics. The sound source is considered in 

two cases, when it is rest and it is moving, for example toward observer with velocity v. The 

velocity of the sound wave is the same in both case (V). However the sound frequency w which is 

perceived by observer depends from source motion velocity v.  The formulae describing this 

dependence the following: 

V

v

w
w

−
=

1

0  (2). This effect can be analyzed by us from point of view of 

the unity of the macro and micro worlds laws and therefore existing also uncertainty in macro 

world. This uncertainty can be seen by us in the velocity v of the source. This velocity v can be 

considered as ∆v . We don’t perceive it as uncertainty because there is Dopler’s effect by means of 

which we find v exactly. If macro world wasn’t wholly  perceived by  us then Dopler’s effect would 

not  be observed. Really does not it look like that, as Hegel said, from the essence (macro world is 

perceived) it is explained its phenomena (on hand Dopler’s effect), the being. From the relativity 

theory it is known that the time of event isn’t the absolute value. It can be understood if we are 

distinguishing from each other observers which is moving and which is rest or one can say that 

system in which the measurements take place is moving and that is rest. In the formula 

vttvx ∆+∆=∆  because of ∆v ≠ 0, the factor t of ∆v must be differed on dependence of measure 

momentum. Therefore, t1 ≠ t2   and, consequently, ∆t≠0. By comparing the formulae obtained by us 

it can be obtained the formula for ∆t. From formula (2) we have:  
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 (3). In the case of non relativistic macro 

world  when the body motion velocity, in that number the velocity of wave in Dopler’s effect, is 

more less than the velocity of light (V <<c), then ∆t→0. Therefore at perceiving non relativistic 

macro world, world in which velocities body, wave sources and waves themselves are more less 

than light velocity, the time of events are absolute. However, if in this world it is considered the 

source of no sound, but light then quite another act, i.e. 
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tt . Therefore the 

contemplation of light by observer, i.e. the reference of consciousness to light, light phenomena is 

very unusual. Therefore in any inertial system the light velocity is constant. Really, this fact is 

postulated by the relativity theory.  Now, let’s consider the Dopler’s effect in the relativistic macro 

world. In this case the effect of relativistic slowing-down of time take into account. It is known the 
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.  Let’s compare this formula with formula (3), i.e. let’s compare the 

relativistic case (∆v→с) with the non relativistic case. The transition from non relativistic case to 

relativistic case is marked by that the factor 







−10

w

w
 will be equal to -1. Therefore 

w

w0  =0 and, 

consequently, w→∞. Therefore if the source of oscillations (any waves) moves, with the velocity 

near velocity of light, towards observer (we have analyzed this case) or opposite (at analyzing this 

case we would such calculations as well) then the frequency of wave w perceived by observer will 

be greater than frequency of wave w0, given off by the source itself. Thus, the perception of the 

relativistic world, i.e. world with velocities near light velocities, by observer is very differed from 

usual perception. In the relativistic world if the source gives off light then ∆t=- t (the case of 

drawing near source) and ∆t= t (the case of going away source). We satisfy oneself once again that 

in any case (relativistic or non relativistic)  the contemplation of light is unusual.  

 Now let’s consider the second case, when ∆р∆х ≥ h and v≤c. this case corresponds to non 

relativistic world. As in previous case, let’s make transformation. So, t
t

v

tvm

h
v

∆
∆

−
∆∆

≥ . Taking 

into account  v≤c  we obtain: t
t

v

tvm

h

∆
∆

−
∆∆

≤ с. Transforming this inequality we obtain:  

c

tv

mc

h
tv

2)(∆
−≥∆∆  (4). Consequently, 

mc

h
tv ≥∆∆ ,  where 

mc

h
 is the Kompton’s wave length of 

particle λk  , i.e. it is the wave length before the scattering. The equation(4) can be presented as: 

∆v∆t = 






 ∆
−

h

tvm

mc

h 2)(
1 . Can we say that ∆v is v? Most likely, if we remember that above 

mentioned case we consider v as ∆v due to effect of perception. Let’s assume that we perceived 

micro world as whole world. Then ∆v will not be presented as uncertainty. During time interval ∆t 

we can find the distance without uncertainty and it is possible due to whole reflection to our sensual 

organs. Then v∆t= ∆λ. Let’s remember that Kompton’s effect is the scattering of electromagnetic 

wave which is accompanied by decreasing frequency. ( )αλλλ cos1−=−′=∆
mc

h
, where λ and λ’ 

are wave lengths before and after scattering, α is the angle of scattering. Thus, the Kompton’s effect 

is effect of micro world which get rid of uncertainty in our whole perception of macro world. 

Really, our skill of finding wave lengths before and after scattering testifies about it.  
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Abstract 

To apply the method of the direct observation of the gravitational waves (GW) based on the opto-

metrical parametric resonance (OMPR) suggested earlier, one needs to analyze the characteristics of 

the astrophysical system that can be used. In particular, the characteristics of such possible sources 

of the gravitational radiation as neutron stars and binaries and such sensitive elements of the remote 

GW detectors as cosmic masers and cosmic lasers. It is also important to account for the distance 

between the GW source and the cosmic maser or laser. It appears that the variety of the situations 

suitable for the OMPR based observations of the GW is rather wide. But the OMPR problem for the 

cosmic laser requires some modifications in comparison to the similar maser problem because in 

the laser case the lower atomic level may be not the ground one. The amplitude of the non-

stationary component of the laser signal in case of the OMPR is obtained. The problem of 

distinguishing the signal in question out of variety of others is discussed. It is shown that the 

elements of the GW-map of the sky can be obtained using the OMPR method right now. 

 

 

Экспериментальные возможности наблюдения гравитационных 

волн на основе метода оптико-метрического параметрического 

резонанса 
 

С.В.Сипаров 
Россия, С-Петербург, 198210, Академия гражданской авиации, кафедра физики 

E-mail: sergey@siparov.spb.su 
 

Для того, чтобы использовать метод прямой регистрации гравитационных волн (ГВ), основанный на 

эффекте оптико-механического параметрического резонанса (ОМПР), предложенном ранее, 

необходимо проанализировать свойства необходимой для этого астрофизической системы. В 

частности, характеристики таких возможных источников ГВ, как нейтронные и двойные звезды, и 

таких чувствительных элементов удаленных детекторов ГВ, как космические мазеры и лазеры. 

Важно также выполнить оценки расстояний между источниками ГВ и космическими мазерами или 

лазерами. Оказывается, что число ситуаций, пригодных для наблюдений ГВ с использованием 

ОМПР, довольно велико. Однако, например, задача об ОМПР для космического лазера требует 

некоторых модификаций по сравнению с аналогичной проблемой для мазеров, поскольку в случае 

лазеров нижний атомный уровень может быть не основным. Получена амплитуда нестационарной 

составляющей лазерного сигнала для случая ОМПР. Кроме того, обсуждается проблемы выделения 

интересующего сигнала среди возможных помех. Показано, что элементы ГВ-карты звездного неба 

могут быть получены с помощью метода ОМПР уже в настоящее время. 
 

Введение 
Теоретические основы этой работы были изложены в [1], где явление ОМПР обсуждалось в 

деталях. Данная работа и ее результаты адресованы экспериментаторам. Для того чтобы 

сделать ее самодостаточной, напомним вкратце основные идеи. 

Усилия по обнаружению ГВ в настоящее время сосредоточены на интерферометрических 

методах, в которых используется изменение расстояния между детектором и зеркалом, 

вызванное действием ГВ. Поскольку (безразмерная) амплитуда h ГВ, приходящих на Землю, 

весьма мала, чувствительность и избирательность инструментов должна быть очень 
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высокой, и это – основная проблема современных исследований ГВ. В стандартной 

экспериментальной установке источник монохроматического электромагнитного излучения 

(ЭМИ), например, лазер, размещен на одном блоке с детектором, так что световой луч 

проходит путь между источником и детектором в оба конца (Рис.1а).  

 

 
Рис.1 

 

Расположим источник монохроматического ЭМИ с другой стороны зеркала (Рис.1в). Тогда 

ГВ будет изменять фазу сигнала так же, как и на Рис.1а, и такая экспериментальная 

установка, оставаясь локальной, также может быть использована для детектирования ГВ. 

Превратим теперь локальную установку в удаленную. Увеличим расстояние между 

блоком «источник ЭМИ – зеркало» и детектором и расположим зеркало достаточно близко к 

источнику ГВ (Рис.1с). С учетом дальнейшего нас будут интересовать периодические 

источники ГВ – нейтронные звезды или короткопериодные двойные. В этом случае 

амплитуда (периодического) изменения фазы сигнала ЭМИ, отраженного от зеркала, станет 

гораздо больше, чем в локальном эксперименте. В то же время период изменения фазы 

сигнала будет по-прежнему равен периоду ГВ, и, следовательно, фаза детектируемого 

сигнала будет также меняться с периодом ГВ. Вместо зеркала в таком удаленном детекторе 

можно использовать любой объект, способный реагировать с монохроматическим ЭМИ. 

Например, это может быть атом с переходом, резонансным ЭМИ. Необходимое ЭМИ может 

доставляться космическим мазером, которому принадлежит этот атом. 

Вопросы о влиянии ГВ на атомные уровни, о влиянии ГВ на ЭМИ, взаимодействующее с 

атомом, о динамике атома в поле ГВ были рассмотрены в [1]. Там также было учтено, что 

поскольку расстояние между зеркалом и детектором становится очень большим, следует 

изменить теоретический подход, обычно используемый для описания локальных 

интерферометрических экспериментов и использовать уравнение геодезической вместо 

уравнения геодезического отклонения [2]. При этом была обнаружена возможность 

специфического параметрического резонанса. Она следует из того обстоятельства, что в 

задаче имеются частотные члены одного порядка величины: частота изменения скорости 

атома, совпадающая с частотой ГВ D, и частота Раби 
h

Eµ
α = ,  

характеризующая силу ЭМИ (µ – индуцированный дипольный момент атома, Е – 

электрическая напряженность поля, ћ = 1.05·10
-27

эрг·с). Вопросы о достаточности 

интенсивности мазера для создания эффекта и о возможности гашения эффекта, 

вызываемого одной частью мазера, действием другой его части были рассмотрены в [3]. 

Было показано, что интенсивности космических мазеров достаточны для ОМПР, а их 

размеры, хотя и накладывают некоторые ограничения, не препятствуют возможности 

наблюдения. 

Явление оптико-механического параметрического резонанса («предшественника» 

оптико-метрического параметрического резонанса в [1]) обсуждалось в [4-6]. Оно состоит в 

следующем. Если механически колеблющийся атом поместить в спектроскопически сильное 

резонансное поле и потребовать выполнения некоторых условий на частоту и амплитуду 

колебаний атома и на частоту Раби системы «атом-поле», то наблюдаемый спектр 

рассеянного излучения приобретет нестационарную компоненту с большой амплитудой. 

«Спектроскопически сильное поле» означает, что вынужденные переходы будут 
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доминировать над спонтанными. «Нестационарная компонента с большой амплитудой» 

появляется, например, на спектре поглощения пробной волны [7] в виде периодической 

смены поглощения усилением, происходящей с большой амплитудой на некоторой частоте, 

неподалеку от резонансной, Рис.2. Но вообще говоря, нестационарная компонента с большой 

амплитудой соответствует периодической смене поглощения усилением потока энергии, 

когда ЭМИ взаимодействует с атомной средой [8]. 

 

 
 

Рис.2 

Следует подчеркнуть, что этот вид сигнала существенно отличается от других. Это не 

просто низкочастотная составляющая спектра. При обычных измерениях никакой 

дополнительный сигнал не регистрируется из-за усреднения по времени. Для регистрации и 

измерения обсуждаемой нестационарной компоненты необходимо модифицировать 

процедуру измерения с учетом периодической смены усиления поглощением – использовать 

схему детектора с дополнительным устройством, подающим отпирающий импульс 

определенной длительности.  

Период указанной смены равен периоду механических колебаний атома, амплитуда 

такого переменного сигнала оказывается выше, чем стационарный пик, это – типичное 

резонансное явление. Следует отметить, что обычный (стационарный) пик (например, 

коэффициента поглощения) остается без изменений.  

Как показано в [1], скорость атома космического мазера в окрестности источника ГВ 

периодически изменяется, и условия ОМПР могут в принципе быть выполнены. Это 

означает, что если подобрать подходящий мазер (например, в окрестности источника ГВ) и 

модифицировать процедуру измерений, то можно зарегистрировать нестационарную 

компоненту и, таким образом, получить прямое свидетельство существования ГВ.  

Условия ОМПР были найдены в [1,3]. Они таковы: поле ЭМИ должно быть 

спектроскопически сильным 

γα >>        (1) 

частотное условие 

D≈α         (2) 

амплитудное условие 

αγω // ≈Dh        (3) 

Здесь ω – частота ЭМИ (т.е. частота космического мазера), γ – постоянная распада атома, h – 

безразмерная амплитуда ГВ. Соотношение между расстоянием до пульсара rS, параметрами 

пульсара и амплитудой ГВ дается выражением [9] 
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=       (4) 

где М – масса пульсара, R – радиус пульсара, ge – гравитационная эллиптичность пульсара, G 

= 6.67·10
-8

 см
3
/г·с

2
.  

 Очевидно, вероятность обнаружить стабильный мазер в окрестности такого активного 

объекта, как нейтронная звезда, невелика. Основная цель данной работы – провести 

детальный анализ всех наблюдательных возможностей и показать, что метод ОМПР может 

быть эффективно использован для получения элементов ГВ-карты звездного неба уже 

сегодня. В последующих разделах мы рассмотрим требования к источникам ГВ, к 

источникам ЭМИ, их характеристики и требования к расстояниям между этими 

источниками, которые могут обеспечить возможность прямого наблюдения ГВ с помощью 

метода ОМПР. Недавнее открытие лазерного эффекта в звездных оболочках [10] требует 

исследования соответствующей ситуации для космического лазера. Это означает, что 

необходимо решить задачу для случая, когда нижний атомный уровень не является 

основным. В заключении приводятся основные результаты. 

 

1. Источники ГВ 
В первую очередь обсудим природу источников периодических ГВ, представляющих 

интерес для нашей задачи. Очевидным кандидатом является нейтронная звезда (пульсар). 

Типичные значения массы и радиуса пульсара составляют М = 10
33

 г, R = 10
6
 см. 

Гравитационная эллиптичность ge – параметр, значение которого установить довольно 

трудно. В [9] эта величина равна ge = 10
-3

 , в то время, как в более ранней работе [11] она 

равна ge = 10
-6

. Существует теоретический нижний предел периода вращения пульсара [12], 

равный 0.5 мс и зависящий от выбора уравнения состояния. В [13] было также показано, что 

если период пульсара меньше, чем некоторое критическое значение, то в течение года 

период возрастет и достигнет этого значения. Для простой модели пульсара, рассмотренной 

в [13], критическое значение составляет примерно 20 мс, что соответствует измерениям для 

пульсара в Крабе. Таким образом, для ГВ, порождаемых пульсаром, имеется верхний предел 

частоты, равный (5 – 20)·10
2
 с

-1
. Сегодня известны сотни пульсаров. У некоторых из них есть 

планеты [14,15], массы и размеры которых больше, чем у Юпитера. Предположительно у 

этих планет могут быть обширные атмосферы. 

Следующий возможный источник ГВ – двойные системы. С учетом предлагаемых 

наблюдений изменения электромагнитного сигнала наиболее подходящими являются 

короткопериодные, а значит, тесные двойные. Они могут представлять собой пары: гелиевая 

звезда – белый карлик/нейтронная звезда, двойной белый карлик, белый карлик – нейтронная 

звезда/черная дыра, двойная нейтронная звезда, двойная черная дыра. Орбитальный период 

таких двойных имеет характерное значение. Когда расстояние между компонентами двойной 

станет достаточно малым, начинается процесс переноса массы. Этот перенос не 

ограничивает излучение ГВ, и двойные с начавшимся массопереносом могут представлять 

дополнительный интерес, поскольку изменения в их периоде, связанные с излучением ГВ, 

могут приводить к последствиям, которые можно связать с результатами предлагаемых здесь 

наблюдений. Объекты с начавшимся массопереносом и малым периодом известны как AM 

CVn и ультракомпактные рентгеновские двойные (UCXB's). Исчерпывающий обзор этих 

двойных проведен в [16-18]. В частности, встречаются такие двойные, как  RX J1914.4+2456, 

V407 Vul [19] с периодом 9,5 минут, KUV 01584-0939, ES Cet [20] с периодом 10,3 минут и 

XTE J1807-294 [21] с периодом 40,1 минут. Двойная с самым коротким периодом, известная 

на сегодняшний день, это RX J0806.3+1527 [22], имеющая период в 5,3 минуты и удаленная 

от Земли всего на 100 пс. Таким образом, двойные дают частоты ГВ в 10
-4

-10
-3

 с
-1

. Радиус 

орбиты двойной может быть оценен с помощью закона Кеплера 
2

2
3

4π
GMT

R =  
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2. Источники ЭМИ 
Число известных космических мазеров превышает тысячу. Их излучение соответствует 

различным переходам в атомах и молекулах, находящихся в космосе. Можно выделить 

следующие типы космических мазеров. 

Районы звездообразования. Как отмечалось в [23-25], некоторые космические мазеры 

возникают в облаках, из которых формируется протозвезда. Если на подходящем расстоянии 

имеется источник ГВ, то такие мазеры могут представлять интерес. 

Околозвездные. Плотность газа в пространстве около звезды может соответствовать 

условиям возникновения мазерного процесса. Возможны два интересных случая: а) звезда 

сама является источником ГВ (пульсар или двойная) и б) имеется удаленный источник ГВ, 

действующий на этот мазер. В соответствии с [23], плотность газа, необходимая для начала 

сильного мазерного процесса для таких молекул, как OH, H2O и SiO, составляет 10
7
-10

9
 см

-3
. 

Для оценки интенсивности такого мазера следует учитывать механизм накачки. Если 

накачка обусловлена только резонансным излучением, то постоянная распада γ 

соответствует естественной ширине с учетом действия сильного поля. Если в накачке 

участвуют и атомные столкновения, то значение постоянной распада должно быть 

исправлено  учетом частоты столкновений, т.е. с учетом плотности газа. 

Межзвездные. В пространстве имеются и мазерные источники, не связанные со звездами. 

Часто упоминается водородная линия λ = 21 см. В областях, удаленных от звезд, 

радиационная накачка доминирует над столкновительной [23]. Заметим, что коэффициент 

Эйнштейна А, характеризующий постоянную распада γ, может быть весьма малым. 

Например, для водородного перехода λ = 21 см он равен А = 2.85·10
-15

с
-1

. 

Поскольку из частотного условия ОМПР (2) следует D ~ α и α = µE/ћ – частота Раби 

системы «атом-поле», необходимо учесть напряженность электрического поля в 

космических источниках ЭМИ, т.е. их интенсивности. Обычно интенсивности космических 

источников ЭМИ измеряют в терминах яркостной температуры Тb. Для изотропного 

распределения интенсивности мазера связь электрической напряженности с яркостной 

температурой дается соотношением [26] 

308
c

kT
E bδνπν=        (5) 

где ν0 = ω/2π – частота перехода, δν = γ/2π – ширина линии, k = 1.38·10
-16

 эрг/К – постоянная 

Больцмана. В отсутствие внешнего поля естественная ширина равна коэффициенту 

Эйнштейна 
3
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3

32

c
A

h

µνπ
γ == . Но в присутствии сильного поля (насыщенный мазер) время, 

которое атом проводит на верхнем уровне, уменьшается в 
0νπh

bkT
 раз [26], и ширина полосы 

соответственно увеличивается в то же число раз 
02 νππ

γ
δν

h

bkT
= . Для получения нижнего 

предела значения яркостной температуры мазера, обеспечивающей ОМПР в случае 

излучательной накачки и в пренебрежении столкновениями, т.е. когда 
02 νππ

δν
h

bkTA
= , учтем 

соотношения 
π
ω

να
µ
α

2
;; 0 === DE

h
 и подставим их в (5). Получим 
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32
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k

c
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     (6) 

Если ω ~ 10
9
 с

-1
 и µ ~ 3·10

-19
 CGSq·см, то минимальная необходимая яркостная температура 

мазера составит Tb  ~ 10
14

К для наблюдений, связанных с пульсаром (D ~ 10
2
 c

-1
), и Tb  ~ 10

8
К 

для наблюдений, связанных с двойной (D ~ 10
-4

 c
-1

). Если ω ~ 10
15

 с
-1

 и µ ~ 3·10
-19

 CGSq·см, то 

минимальная необходимая яркостная температура лазера составит Tb  ~ 10
2
К для 
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наблюдений, связанных с пульсаром (D ~ 10
2
 c

-1
), и Tb  ~ 10

-4
К для наблюдений, связанных с 

двойной (D ~ 10
-4

 c
-1

). Обычно яркостные температуры пятен в космических мазерах 

составляют 10
9
К для метанольных мазеров, 10

12
К для гидроксильных мазеров и 10

15
К для 

Н2О-мазеров. Таким образом, существующие мазеры в принципе имеют интенсивности 

ЭМИ, необходимые для ОМПР. Если в накачке участвуют столкновения, то γ возрастает, и 

яркостная температура, соответствующая тому же значению напряженности понижается (5). 

Если интенсивность мазера выше, чем необходимо для ОМПР, это означает, что в глубине 

мазера существует область, где условия ОМПР выполнены [2]. Тогда именно эта область и 

станет источником нестационарного сигнала, характерного для ОМПР. 

 

3. Расстояния 
Оценим теперь расстояния между источником ГВ и областью ОМПР в мазере, которые 

приводят к реализации условий ОМПР. Условие (3) предполагает учет следующих факторов: 

1) постоянная распада γ, характеризующая атомный переход и концентрацию атомов, 2) 

частоту атомного перехода, т.е. частоту мазера ω, 3) интенсивность поля мазера, 

выражаемую его частотой Раби α, 4) частоту D источника ГВ, 5) амплитуду ГВ h, связанную 

с расстоянием между источником ГВ и мазером rS с помощью соотношения (4). 

Используя определения и условия ОМПР, найдем соотношение между наблюдаемой 

частотой мазера D и соответствующими значениями µ, ω, Тb и γ 
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Тогда    
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2
2 16

bT
c

k
D ωγµ

π h
=          (7) 

Подставим условие ОМПР h = γ/ω и условие (7) в уравнение (4). Получим 

))((
16 2222

37

2

beS TgMR
c

Gk
r ωµ

π h
=      (8) 

Первый множитель представляет собой комбинацию мировых констант, второй – 

характеризует источник ГВ, третий – характеризует источник ЭМИ. Для дальнейших оценок 

запишем 

))((10
222231

beS TgMRr ωµ⋅≈ − см 

и используем М ~ 10
33

 г, R ~ 10
10

 см, ge ~ 10
0
 для двойной, М ~ 10

33
 г, R ~ 10

5
 см, ge ~ 10

-3
 для 

пульсара, µ ~ 3·10
-19

 CGSq·см, ω ~ 10
9
 с

-1
 для космического мазера, µ ~ 3·10

-19
 CGSq·см, ω ~ 

10
15

 с
-1

 для космического лазера. Сведем результаты в таблицу 

 

Таблица 1 

 Мазер Лазер 

Двойная rS ~ 10
3
 Tb

2 
см rS ~ 10

15
 Tb

2 
см 

Пульсар rS ~ 10
-10

 Tb
2 
см rS ~ 10

2
 Tb

2 
см 

Эти соотношения означают, что для данной яркостной температуры источника ЭМИ 

источник ГВ, пригодный для наблюдений, связанных с ОМПР, должен находиться на 

указанном расстоянии. Оценим необходимые яркостные температуры источников ЭМИ для 

околозвездных и межзвездных расстояний между источниками ЭМИ и источниками ГВ. 

Полагая rS ~ 10
14

cм (порядка 10
0
-10

1
 а.е.) для околозвездного источника ЭМИ в окрестности 

источника ГВ, находим 

 

Таблица 2 

Околозвездный Мазер Лазер 

Двойная Tb ~ 10
6
 K Tb ~ 10

0
 K 

Пульсар Tb ~ 10
12

 K Tb ~ 10
11

 K 
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Полагая rS ~ 10
18

cм (порядка 10
0
-10

1
 пс) для межзвездного источника ЭМИ вдали от 

источника ГВ, находим 

 

Таблица 3 

Межзвездный Мазер Лазер 

Двойная Tb ~ 10
8
 K Tb ~ 10

2
 K 

Пульсар Tb ~ 10
14

 K Tb ~ 10
13

 K 

 

Сравнивая эти результаты со значениями минимальных необходимых температур, 

полученных в конце предыдущего раздела, получаем основной результат настоящей работы: 

Космический мазер, расположенный на межзвездном расстоянии от источника ГВ, может 

быть использован для наблюдений ОМПР для обоих видов источников ГВ, в то время как 

мазер, расположенный поблизости от источника ГВ, непригоден для наблюдений ОМПР. 

Космический лазер подходит во всех случаях, но его относительно большое значение γ 

приводит к нарушению амплитудного условия (3), когда расстояние становится большим и h 

убывает в соответствии с (4). Таким образом, космический лазер может выявить действие 

ГВ, только когда он расположен в окрестности источника ГВ. Представляется вероятным, 

что лазерный эффект может возникать не только в звездных оболочках (как в η Carinae), но и 

в атмосферах гигантских планет в окрестностях пульсаров. 

Таким образом, анализируя нестационарные составляющие сигналов космических 

мазеров, можно построить элементы ГВ-картины звездного неба. Сигналы космических 

лазеров, модулированные ГВ, (если они будут обнаружены) могут быть использованы для 

исследования соответствующих ГВ источников. 

 

4. Задача об ОМПР для космических лазеров 
В [10] был обнаружен лазерный эффект (ω ~ 10

14
 с

-1
 ) в облаке, окружающем горячую звезду 

η Carinae. Он проявлялся в результате перехода между возбужденными состояниями в FeII, 

причем верхний уровень накачивался сильным излучением HLyα. Здесь нас не будет 

интересовать детальный механизм этого эффекта (он рассматривается в [10]). Важным 

является то, что в космосе могут иметься и пары обычных уровней (не метастабильных), 

которые могут принимать участие в ОМПР. Это означает, что уравнения, использованные в 

[1] для описания ситуации с космическим мазером, следует модифицировать с учетом того, 

что нижний уровень может быть и не основным. 

В [1] задача об ОМРПР для атома мазера в поле ГВ рассматривалась для случая, когда 

нижний уровень двухуровневого атома был основным или мог считаться таковым 

(метастабильный уровень). Тогда постоянная распада соответствует либо естественной 

ширине линии, либо линии в сильном резонансном поле, либо может быть оценена с учетом 

столкновений. Решение описывает свойства поглощения/усиления системы «атом+поле». Во 

всех случаях ведущий член асимптотического разложения по степеням ε (ε = γ/α12
1/2

) 

проявлял осциллирующее поведение и имел порядок единицы, т.е. амплитуда 

нестационарной компоненты члена, пропорционального потоку энергии, была сравнима со 

значением  стационарной (обычной) компоненты. 

Теперь модель вновь представляет собой двухуровневый атом, скорость которого 

осциллирует вдоль волнового вектора ЭМИ с частотой D, равной частоте ГВ. Этот атом 

взаимодействует с ЭМИ, состоящим из двух компонент: первая является сильной и 

представляет собой излучение мазера с частотой Ω1, близкой к частоте атомного перехода  ω, 

вторая, Ω2 , является слабой и возникает в результате воздействия ГВ на электромагнитное 

поле, Ω2 – Ω1 = D. Тогда уравнения Блоха для компонент матрицы плотности, описывающей 

динамику атома, таковы 
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Здесь ρ22 и ρ11 – населенности уровней, ρ12, ρ21 – поляризационные члены, γ – продольная 

постоянная распада, γ12 – поперечная постоянная распада, α1 = µE0/ħ, α2 = µE0hω/Dħ – 

параметры Раби основной (сильной) и дополнительной (слабой) волн такие же, как в [1], k1, 

k2 – волновые вектора этих волн (в нашем случае их можно считать равными и равными k), Λ 

– описывает некогерентную накачку произвольной природы. В приближении вращающейся 
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)(2

)];(exp[

)];(exp[

1122

2/1

11212

12121

ρρ

ρ

ρ

−=

−Ω−=

−Ω=

−R

kytiR

kytiR

 

Используя обозначения, приведенные в Приложении, получим 
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Уравнение (12) может быть решено с помощью метода асимптотического разложения по 

малому параметру ε = γ/α12
1/2

, характеризующему силу поля. Математический метод 

решения – тот же, что и в [1]. Основной момент – использование условий ОМПР 

)1(;22 OF d =+=+=≡+ νενδενδσ      (14) 

где ν – параметр настройки на ОМПР.  
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Ведущий член разложения пропорционален ε
-1

, благодаря наличию ε в знаменателе. В 

соответствии с (3), ε ~ hω/D и, поскольку все остальные параметры в (15) имеют порядок 

единицы, можно видеть, что амплитуда нестационарной компоненты велика. Этот результат 

доказывает возможность использования и других переходов, помимо тех, что характерны 

для космических мазеров, например, таких, как в [10], где рассматривается лазерный эффект 

в звездной оболочке. 

 

5. Обсуждение 
Результаты настоящей работы доказывают, что метод, основанный на использовании ОМПР, 

пригоден для прямого наблюдения ГВ и для развития гравитационной астрономии 

периодических источников ГВ. Этими источниками являются нейтронные звезды с 

ненулевой гравитационной эллиптичностью и короткопериодные двойные. 

Чувствительными элементами удаленных детекторов ГВ являются атомы достаточно 

распространенных в космосе (насыщенных) космических мазеров и атомы лазеров, 

наблюдаемых в звездных оболочках. Уже наблюдаемые интенсивности э-м излучения этих 

космических мазеров оказываются достаточными для того, чтобы эффект можно было 

наблюдать с Земли с помощь уже существующих инструментов (например, 

радиотелескопов), которые для регистрации ОМПР должны быть дополнительно 

оборудованы устройством с отпирающими импульсами.  

Прежде, чем приступить к наблюдениям, необходимо ответить на два основных вопроса: 

а) возможно ли уверенно выделить сигнал, причиной которого является ГВ, и б) где 

наблюдать такой сигнал. 

Во Введении было отмечено, что нестационарная компонента является такой деталью, 

которая не может быть замечена в обычном эксперименте. Более того, «обычные» 

возмущения в сигнале будут незаметными при наблюдениях, модифицированных для 

регистрации нестационарного поглощения/усиления потока энергии. Уравнение (15) и его 

аналог в [1] показывают, что с точки зрения чувствительности существующих инструментов 

нестационарная компонента излучения мазера может наблюдаться, если наблюдается 

обычный сигнал мазера. Но процедура наблюдения должна быть изменена таким образом, 

чтобы избежать усреднения по времени. Эффект ОМПР не означает, что мазерный сигнал 

просто содержит низкочастотную компоненту. Она присутствует, но ее амплитуда мала по 

сравнению с высотой пика основного сигнала мазера. Дело же заключается в том, что 

существует значение частоты, близкой к частоте мазера, на которой ЭМИ периодически 

ослабляется и усиливается с периодом ГВ, в то время как обычная (стационарная) 

компонента мазерного сигнала остается без изменений. Наблюдение нестационарной 

компоненты было бы прямым свидетельством существования ГВ.  

Результаты раздела 4 показывают, что имеются довольно широкие возможности для 

наблюдения ОМПР. Мазеры всех типов (районы звездообразования, околозвездные, 

межзвездные) могут испытывать воздействие ГВ со стороны пульсаров или двойных. 

(Космический лазер также можно использовать для наблюдений ГВ с помощью ОМПР. Для 

этого потребуется лазер, расположенный вблизи пульсара или двойной). Частоты таких 

воздействий соответствуют частотам вращений пульсаров или двойных. Практически можно 

использовать для наблюдений почти любой мазер в надежде, что на него воздействует какой-

либо источник ГВ. 

Таким образом, возможный эксперимент по прямому наблюдению ГВсостоит в 

следующем. Принимая во внимание поперечный характер ГВ, следует постараться 

удовлетворить условию на геометрическое расположение астрофизической системы: 

источник ГВ и Земля располагаются на концах диаметра, а мазер – на самой окружности. 

Выбрав подходящую пару «источник ГВ – мазер», наблюдатель захватывает сигнал. Обычно 

сигнал космического мазера состоит из набора узких пиков, частоты которых расположены 

близко друг к другу. Ширина импульса дополнительного устройства детектора делается 

равной половине периода источника ГВ, промежуток между импульсами имеет такую же 
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величину. Затем наблюдатель выбирает один из пиков и изменяет фазу импульса устройства 

детектора до тех пор, пока видимый сигнал не обнаружит рост. Затем эта процедура 

повторяется для других пиков. Конечно, при выборе каждого конкретного источника ЭМИ 

для поиска ГВ следует проводить более точные оценки параметров с учетом частоты линии, 

дипольного момента, яркостной температуры и существования источника ГВ поблизости. В 

данной работе показано, что такие оценки приводят к разумным результатам.  
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The crisis of Newtonian physics and the attempts to overcome it were peculiar to the scientific 

community of Ukraine in the 1900-1939
th

. The scientific community of Ukraine as well as the 

world scientific community was trying to solve it by using in its efforts both the ideas of classic 

physics, and ideas professed by the followers of relativity. These works are selectively mentioned in 

the main historical and physical researches of the Russian historians of science: mainly those, which 

were published in the Russian editions. The work of the famous historians of physics Vizgin and 

Gorelik is the most representative in this context. The problems of the perception of the theory of 

relativity in Russia and USSR are considered in this work [2]. 

Positivism required solving the problem of the existence of the ether based on concrete, 

positive, experimental knowledge. After Einstein’s article up to 1921, there were no any 

experimental substantiations of the denial the existence of the ether, except Michelson’s 

experiment. Therefore, considerable distribution was received by theoretical works, which had two 

exact priorities. The first block of works was directed to the substantiation of the validity of the 

relativity and its results. The second one, based on special assumption and conditions within the 

framework of classic physics and ideas about the existence of the ether, was directed on maintaining 

the stability of Newtonian mechanics as an integrated loop system that allowed to reject relativity, 

or to explain its results. 

The formation and development of the idea of the theory of relativity in Ukraine, was associated 

the worldwide and all-Russian scientific process. This introduced a number of new strokes. It also 

demonstrated the peculiarities of the development of physics in Ukraine in the first half of the 20
th

 

century. Among those who in Ukraine worked on these problems were disciples of the world known 

physicists (Planck’s, Lanzheven’s, Lorentz’s, Varburg’s). It gives evidence of the close connections 

of Ukrainian physicists not only with Russian, but also with the world scientific community. The 

activity of physicists in different countries were important for the development and understanding 

of relativity at a new, non-classical level. 

We analyzed the effect of worldwide tendencies, like the creation of the theory of relativity; the 

quantum theories on the process of formation of the physical science in Ukraine both in the times of 

the Russian empire, and the USSR. The works of many scientists, including the Ukrainians, were 

either forgotten or weren’t appreciated properly because of some historical circumstances. The aim 

of this paper is the analysis of the original works of the different authors. On the basis of these 

works it is possible to determine the main problems, which were actual during that period. 

The theory of the ether took not the last place in a problematic of researches, which were 

conducted in the Ukraine at the end of the 19
th

 century. Gruzintsev and Shyller worked in this area. 

Shyller offered his own variant of the theory of a resilient ether (1890) [31]. The problem of 

existence of the ether was called in question after the appearance of the special relativity theory 

because of the absence of the more or less satisfactory theory of ether. This circumstance caused 

minimization of the further extending and development of the ether theories. 

The appearance in 1905 of Einstein’s paper «To the electrodynamics of moving bodies» became 

the turning point in the history of physics. Debates concerning the relativity theory touched 

scientists all over the world. They caused the open debates, which affected the main concepts of 

physics, in particular space and time. Grdina, Gruzintsev, Kordysh, Kasterin, Shtrum, Lashkarev, 

Grave and other were engaged in the problems of the relativity theory. These scientists can be 

divided into two camps. Some tried to substantiate a relativity and its results. Others tried to deny 

the principle and to explain its results, thus they remained within the framework of classic physics. 
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The postulates of a relativity theory were critical estimated in that works. To substantiate or refute 

the relativity theory, the interpretation of a Michelson’s and Morly’s experiment was critical 

estimated. This experience was interpreted according to relativity at the time of the СТО’s 

formation. The speed of light in any inertial system of counting has the identical value “c” and does 

not depend on a wave direction. This statement has called many critical remarks in the scientific 

community. 

Let us stop on some works of the indicated authors. 

The professors Ekaterinoslav (Dnepropetrovsk) institute of Mines Jaroslav Grdina can be 

referred to the consistent opponents of a relativity theory.  

Jaroslav Grdina devoted seven works to problems of a relativity theory. They were published 

since 1912 to 1927. The test data are examined in these works. On the basis of these data it is 

possible to calculate the ratios e/m0, where е is the elementary charge, m0 - complete transversal 

(apparent) electronic mass at infinitesimal speeds (1912 « To a problem on electronic mass ») [8]. 

In the work « To a problem on a relativity » 1914 [9] author stated that the new positions of a 

relativity theory complicated the customary concepts which were experimentally checked in a 

classic mechanics. The relativity theory is insufficiently proved in the theoretical sense. The 

persistence of the speed of light was criticized (« Physical or restricted relativity » 1915) [11]. The 

scientist was the follower of the theory of ether. That’s why he considered, that the moving of a 

light source regarding ether had have an effect for speeds of light in different directions. On long 

distances from a light source, the speed of light should depend only on properties of ether. A 

criticism of a Delariv’s hypothesis appeared in 1915. Delariv offered to supplement the Hertz’s 

theory  about a complete diggings of a ether by the Earth on “... A gradual daggling the ether by 

earth on different distances... ” [р. 3, 7]. In such way he tried to explain the negative outcome of a 

Michelson’s experiment. Grdina pointed, that the hypothesis „ not only can not explain an 

phenomenon of a light aberration, but even caused its complete denying” [р. 13, 7]. In paper « The 

basic Laws of moving » (1924) the scientist sets up a fundamentals of the “Cartesian mechanics 

with reference to, according to the newest views, only to relative movements, in relation to inertial 

systems of coordinates” [р. 188, 10]. Negative attitude to a special relativity theory also is reflected 

in it. He criticized Einstein for his denial the existence of ether “Einstein within 15 years (since 

1905 for 1920) terrorized a science by complete negation of the existence of ether” [р. 189, 10]. In 

same paper, there is a promising to state, „ The declaiming against common principles of relativity 

in the special paper” [р. 189, 10]. It also indicates aversion by the writer of ideas of the Special 

relativity theory and general theory of relativity. In 1927 the last work devoted to special relativity 

theory was published. It was «A Note on a relativity » [13]. In it, by the way, is expressed, that the 

theory had no internal logical inconsistencies, therefore it was possible to deny it only by 

experienced way. 

In 1924 Shtrum published his paper «About speeds that are more than the speed of the light, for 

Special relativity theory» [34]. He analyzed Einstein’s and Laue’s conclusions. The writer came to 

output, that the high speeds did not contradict Special relativity theory. Thus he did not disclaim 

postulates of a relativity theory. He also stated the supposition, that apart from a relativity of 

simultaneity of events and expansion of periods, there was a relativity of a direction of time. In the 

same 1924 he published, prolonging the problem, paper « The newest outcomes of a Michelson’s 

experiment and attempts of their hypothetical explanation» [р. 107, 32]. The author offered his own 

explanation of the positive takes of Miller’s experiments. He supposed that “speed of light of the 

movable body, is a function of a speed of moving of a source“. This paper called a number of the 

remarks from the side of Grdina who published them in the article «New about a Michelson’s 

experiment and Einstein’s relativity» [12] 

L. Shtrum concerned the problem of speeds that are higher than speeds of light in work «Phase 

speed for kinematics in relativity theory» [33]. Analyzing the behavior of the quantity c
2
 /v he 

comes to the following conclusion “the existence of processes which move with speed that is more 

than speed of light doesn’t contrary to the statements of the relativity theory and also to the 

gnoseological principle of a causality“[р. 87, 32]. Shtrum pointed that in 1923 the similar 
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calculations were conducted by Viennese physicist Bass R. In this connection he wrote that his 

thoughts about them are correct.  

Though the relativistic corrections for the astronomical researches are not considerable, the 

relativity theory was interesting for an astrophysics Gerasimovich (later he was the head of the 

Pulkov’s observatory). «Aberration of a light and a relativity theory» was one of his first works [4]. 

He wrote it during his studies at the Charkov University. In 1914 it was published not only in 

Russian, but also in the French magazine [35]. Gerasimovich’s research «Universe at light of a 

relativity theory » [3] is dedicated to the analysis of the problems of space and time from the point 

of view both Special relativity theory and General theory of relativity, and described its application 

in astrophysical researches. Gerasimovich in his theoretical researches of the planetary nebula used 

the achievements of modern physics such as ideas from the theory of quantum up to a general 

theory of relativity. In D. Menzel’s and Gerasimovich’s co-operative work «Subatomic energy and 

star-shaped radiation » (was awarded with the premium of the New York academy of sciences) was 

said :“in a subsoil of stars a certain statistical equilibrium of processes could take place: the process 

of energy release at annihilation can partly be compensated by the reverse process. It is the 

transformation of quantum of radiation in substance” [35]. 

Vadim Djachenko’s three works dedicated to the problem of the epicycles task in the special 

relativity theory are known for us (first two were reported by the academician D.Grave). With the 

help of the equations of classic mechanics and using the positions of a special relativity theory, 

author described the movement of a planet Mercury. 

The academician D. Grave, who was famous as talented mathematician, also paid attention to 

the problems of natural sciences. In his article «About electromagnetic phenomena in solar system» 

[6] he proposed to organize a laboratory on learning the effects of electromagnetic phenomena on 

planets movement. As he said, it is also necessary to find a physical reason in deviation of a 

perihelion of Mercury. In paper «Electromagnetic foundation of mechanics » [5] author tried to 

return to the old Thomson’s ideas concerning the interaction of ether and substance. 

V. Lashkarev’s work «To the theory of substance and light movement in gravitational field» 

[26] it is also very interesting in this direction. Like Grdina, he tried without the rejection of 

Einstein’s theory of relativity to explain the deviation of a perihelion of Mercury and the deviation 

of light beams in a gravitational field of the Sun being based on dynamical equations. In this work 

author tried to „construct the theory of phenomena in gravitational field accepting for a postulate 

the invariance of the space and time being based on equation of dynamics.” [р. 12, 26] He proved 

his theory by the following regulations: 

- All material objects (material solids and the light beams) are submitted to the laws of 

impulse and saving of energy; 

- Newtonian attractive force influences all solids; 

- Potential energy of attraction has a mass like kinetic energy does (generalized 

principle Hasenohrl)” [26] 

Having used these statements, he received the same quantitative data for the magnitude of the 

planets perihelion movement and for light deflection as for general theory of relativity. In 1926 he 

presented the report on this topic on the 5-th Congress of the Russian physicists association in 

Moscow. 

M. Kasterin worked in Novorossiysk (Odessa) University in 1910-th. Even at his life his 

researches caused sharp discussions. Published in “Izvestiya AN SSSR” (1937) articles are the 

evidence of this process «About article Kasterin’s M. P. "Generalization of the main equations of 

aerodynamics and electrodynamics"» ( Blokhihtsev D. I., Leontovich M. A., Rumer Yu. B., Tamm 

I. E., Fock V.А., Frenkel Ya. I.) [1], and «About operations Kasterin M. P. on an electrodynamics 

and interfacing problems» (Tamm I. Е.) [29]. By the way, M. Kasterin worked on probation his 

ideas under the management of professor E. Varburg in Berlin, and under the professors Lorentz 

and Kamerling-Onnes in Leiden. M. Kasterin tried in his theory to transfer concepts of 

aerodynamics to electrodynamics.  
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In the work «About groundlessness of Einstein’s relativity» [18] he analyzed Buherer’s 

experiment on β- rays speed determination. This work was published in Odessa in 1919. But 

already in 1917 he made a report on this topic in Moscow mathematical society. M. Kasterin 

pointed on the contradiction of the law of compensation, according to Lorentz’s theory 

(
H

E

c

U
=ϕsin ), with the test data on the basis of „Buherer’s curves”. That is why he came to the 

following conclusion: β- elements could have speeds more than speed of light. “…derivation of this 

formula is intimately linked with the new kind of equations of electrodynamics, and thus these new 

equations are subordinate to a mechanical relativity (Galileo). Therefore the problem of the 

Einstein’s formula at this way of calculation β (ratio
c

U
) passes by itself …” [р. 10, 18]. In 1919 N. 

Shaposhnikov, professor in Ivanovo - Voznesenskiy Polytechnic Institute published his article «To 

the M. Kasterin’s paper “Sur la non concordance du principe de relativite d'Einstein " [30]. N. 

Shaposhnikov agreed with the statement about the mismatch of the experimental data. However, he 

refrained from the cardinal statement about illegality of the relativity theory. „The reason of the 

conclusions could depend on formula
H

E

c

U
=ϕsin . In spite of the accordance of its particular kind 

(
H

E

c

U
= ) to Buherer's, Wolz's, Neumann's and Schafer's experiments, it does not demonstrate, that 

it is true. Kasterin makes a more particular conclusion: he speaks about an inconsistency in 

relativity. The experiments of the indicated researchers prevent us from joining this conclusion ...” 

[р. 4, 30]. 

Leonid Kordysh (Planck’s follower), professor of theoretical physics who worked in Kiev 

Polytechnic Institute and Kiev University, devoted a number of his works to problems both 

common, and special relativity theory. In 1910 there appeared “… one of the first papers in Russian 

…” [2] - « Elementary derivation of basic formulas of a relativity theory » [24]. In «Gravitation and 

inertia» [19] he expounded the regulations of a general theory of relativity. «Gravitational theory of 

diffraction phenomena» [20] was dedicated to the application of the above-stated positions. In 1924 

in «Relativity theory and theory quantum» [22] L. Kordysh made an assumption about the existence 

of gravitational intermolecular fields. In «Electromagnetic waves with speeds higher than the speed 

of light » [24] he considered the possibility of the existence of waves spreading with super light 

speeds and which are subordinated to Maxwell’s equations. In « Characteristic features of matrix 

theory» [23] and «About some peculiarities of Brolі's and Shredinger’s wave theory» (1928) [21] 

the scientist researched the quantum conditions of Bohr and Sommerfeld, analyzed the main ideas 

of a matrix mechanics and its connection with wave mechanics.  

At the beginning of the 20-th century Charkov Professor Aleksey Gruzintsev in his works 

evolved his opinion on the ether, as the frame, which was intimately connected with an 

electromagnetic field. In the paper «Lorentz’s transformation laws and relativity» [14] A. 

Gruzintsev pointed out that the equations of electrodynamics saved their form at Lorentz’s 

transformation rules. He showed an invariance of Maxwell’s equations for the sphere concerning 

Lorentz’s transformation rules. Such an original conclusion was very important for the relativity 

theory substantiation. Nevertheless, at the same time the scientist very cautiously expressed his 

thoughts about the negative interpretation of the results of Michelson experiment. He was a 

supporter of a detailed investigation of this problem.  

N. Rosen’s investigation « Plainly polarized waves in the general relativity theory » [28] is 

dedicated to a general theory of relativity. The case of progressive wave was surveyed in it. The 

author concluded that because of the nonlinearity of the equations gravitational or electromagnetic 

perturbation caused the collapse of the metrics. In «Elementary particles in the theory of field» 

(1939) [27] Rosen reconsidered the previous attempts to construct a classic field theory, in which 

the existence of elementary particles would be admitted. In the paper of build-up of is he admitted 

the possibility of constructing the classic theory of elementary particles. However, such theory had 
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a disadvantage. It was the negative electronic mass. The author expected that “… perhaps with the 

transition from classical to quantum theory this difficulty will disappear.” [р. 286, 27]. 

For the impartial evaluation of the place of the native physicists in the process of non classical 

physics foundation it is necessary to analyze their works in details in future.  
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С помощью обобщения пространственно-временных преобразований вращения (преобразований 

Лоренца) на область сверхсветовых скоростей получены соотношения специальной теории относи-

тельности и волновое уравнение для тахионов (сверхсветовых частиц) с вещественной массой. 

 

Инвариантность уравнений математической физики относительно преобразований вращения 

и галилеевых преобразований широко используется при исследовании свойств решений этих 

уравнений [1,2]. Пространственно-временные преобразования вращения позволяют получить 

важные характеристики релятивистских частиц, в то числе и частиц, движущихся с сверхсве-

товой скоростью. 

Сверхсветовые частицы с мнимой массой впервые были рассмотрены Я.П. Терлецким 

[3,4]. Американский физик Дж. Фейнберг предложил называть эти частицы тахионами [5]. 

Обширную библиографию научных публикаций по тахионам и описание их свойств можно 

найти в [6-8]. Основным вопросом при изучении тахионов является физическая интерпрета-

ция их мнимой массы. 

В настоящей работе с помощью предложенного в [9,10] обобщения пространственно-

временных преобразований вращения (сверхсветовых преобразований Лоренца) дано описа-

ние тахионов с вещественной массой. 

Пусть в изучаемой области физического пространства зарегистрирована характерная 

скорость распространения сигнала c>0 (например, скорость звука или скорость света). Нали-

чие характерной (критической) скорости c позволяет в случае двух независимых переменных 

- одной пространственной координаты x и времени t ввести переменные 

z x ct x ct= + = −, *  z              (1) 

Эти переменные «следят» за волнами, распространяющимися со скоростью c в отрица-

тельном и положительном направлениях оси x. Назовем z  и z* сопряженными характери-

стическими аргументами (числами). 

Введем параметр V x t= /  с размерностью скорости и «число Маха» M V c= / . Тогда ар-

гументы (1) можно записать в виде z ct M ct M= + = −( ), ( )*1 1  z . 

Приведем «тригонометрическую» форму записи характеристического аргумента 

z x ct= +  через гиперболические косинус и синус 

z ch sh= + =ρ ϕ ϕ ρ ϕ( ) exp ,            (2) 

 

где         
ρ

=ϕ
ρ

=ϕ
−
+

=ϕ−=⋅=ρ
ct

sh ,
x

ch ,
ctx

ctx
ln  ,tcxzz 222*2 .   

Графически можно изобразить плоскость характеристических чисел с графиками гипер-

бол ρ2 2 2 2= −x c t  при ρ = 1 и c = 1. Величина ρ  характеризует расстояние (интервал) меж-

ду началом координат ( , )x t= =0 0  и точками окружности или «гиперболическое расстоя-

ние» (интервал) между началом координат и точками гипербол. Угол ϕ  отсчитывается от 

горизонтальной оси x.  

Подчеркнем следующую важную особенность аргументов (1), (2). Для них величина ин-

тервала ρ = −x c t2 2 2  и угла ϕ  являются действительными при V c≥ . Если параметр V  

считать скоростью движения материальной точки, то области правого I и левого II квадранта 

(между биссектрисами x t c/ = ± ) отвечают областям сверхкритических скоростей матери-

альных точек V c> . При V c<  величины ρ = −x c t2 2 2  и ϕ  для области сверхкритиче-
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ских скоростей становятся мнимыми. Для возможности рассмотрения областей докритиче-

ских скоростей (при действительных значениях интервала ρ  и угла ϕ ) следует ввести харак-

теристические переменные по формулам  

z ct x ct x= + = −, ,*  z              (3) 

ρ ϕ ϕ
ρ

ϕ
ρ

2 2 2 2= ⋅ = − =
+
−

= =z z c t x
ct x

ct x

ct x* , ln , ,  ch  sh .    

В этом случае имеем две области докритических скоростей V c<  с действительной ве-

личиной интервала ρ = −c t x2 2 2  и угла ϕ , отсчитываемого в этом случае от вертикальной 

оси t. Эти области представляются верхним III и нижним IV квадрантами (между биссектри-

сами x t c/ = ± ). Также можно изобразить гиперболы ρ2 2 2 2= −c t x  при ρ = 1 и c = 1. В ра-

ботах [9,10] изложены свойства функций характеристического аргумента и описаны их при-

ложения к линейным задачам акустики и электродинамики. 

Рассмотрим преобразования независимых переменных x и t, оставляющие неизменными 

интервалы ρ  в плоскости характеристического аргумента. Этими преобразованиями будут 

параллельные переносы и вращения системы координат. Параллельные переносы приводят к 

элементарному изменению начала координат ( x = =0 0,  t ) и не позволяют получить допол-

нительных интересных свойств пространства характеристического аргумента и его функций. 

В то же время преобразования вращения дают уникальную информацию о свойствах про-

странства - времени. 

Переход от координат x t,  к новым координатам X T,  при применении преобразования 

поворота определяется формулами 

X x ch ct sh
x

c
t ch= − = − +ϕ ϕ ϕ ϕ, ,  T  sh         (4) 

где ϕ  -  угол поворота. При преобразованиях (4) величина интервала ρ  не меняется.  

Представим преобразования поворота (4) для двух случаев: квадрантов I и II сверхкрити-

ческих областей и квадрантов III и IV докритических областей. Для первого случая аргумен-

тов (1), (2) имеем  

M

1M

M
ch  ,

1M

1
sh ,

M

1

V

c
th

22
γ=

−
=ϕγ=

−
=ϕ==ϕ .   

Подставляя последние формулы в (4), получаем «сверхкритический» (в частности, 

«сверхсветовой») аналог преобразований Лоренца  

X Mx ct Mct x= − = −γ γ( ), ( )  cT           (5) 

Для второго случая аргументов (3) пишем 

γ=
−

=ϕγ=
−

=ϕ=ϕ
22 M1

1
ch  ,M

M1

M
sh ,Mth      

 

и получаем обычные «докритические» (досветовые) преобразования Лоренца  

X x Mct ct Mx= − = −γ γ( ), ( )  cT .          (6) 

Использованный метод получения преобразований (5) и (6) повторяет подход А. Эйн-

штейна [11], который изложен также в [12,13] при получении преобразований Лоренца (6) в 

Специальной Теории Относительности (СТО). Однако традиционная СТО постулирует не-

возможность превышения скорости света c в пустоте [11-14], в связи с чем в ней не рассмат-

ривались преобразования (5). Если отказаться от этого постулата, то СТО  обобщается на 

случай сверхсветовых скоростей (со сверхсветовыми преобразованиями Лоренца (5)) и 

сверхсветовых систем отсчета. 

Впервые преобразования (6) были получены в 1887 г. В. Фогтом [15], как преобразова-

ния, оставляющие инвариантным волновое уравнение Даламбера. В 1900 г. в монографии 
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Дж. Лармора [16] было показано, что уравнения электродинамики Максвелла в вакууме так-

же инвариантны относительно линейных преобразований пространственно-временных коор-

динат типа (6). Эти преобразования были получены и Г. Лоренцем в 1904 г. [17] и в после-

дующих публикациях стали, следуя А. Пуанкаре [18], именоваться преобразованиями Ло-

ренца. Установление свойств инвариантности уравнений Максвелла относительно преобра-

зований Лоренца было решающим шагом на пути к созданию СТО [10] и к введению единой 

геометрии пространства - времени (псевдоевклидовой геометрии) Г. Минковским [14]. 

Обобщению преобразований Лоренца на область сверхсветовых скоростей посвящены также 

работы [19, 20]. 

Традиционная СТО [9-12] постулирует конечную скорость распространения взаимодей-

ствий, причем полагает эту скорость максимально возможной и равной скорости света в пу-

стоте ( c = ⋅2 998 108,  м/с). А. Эйнштейн в своих лекциях, прочитанных в Принстонском уни-

верситете в мае 1921 г., говорит: «Скорости материальных тел, превышающие скорости све-

та, невозможны, что вытекает из появления радикала 1
2

2− V
c

 в формулах частного пре-

образования Лоренца» (см. [11], стр. 31). В настоящей работе в качестве «частных» преобра-

зований Лоренца возьмем наряду с преобразованиями (6) при M < 1 преобразования (5) при 

M > 1 и тем самым снимем ограничения по диапазону скоростей материальных тел и свя-

занных с ними систем отсчета. Опираясь на сказанное, построим аналог СТО при M > 1. 

Имеем «сверхсветовые» преобразования Лоренца (см. (5)) для системы координат 

X Y Z T, , , , которая движется относительно исходной системы координат x y z t, , ,  вдоль оси 

x  со скоростью V0 >с,  

x MX cT Y Z McT X= + = = = +γ γ( ), , , ( ), y  z  ct      (7) 

где γ = − =1 12
0/ , /M V c M .  

Из (7) имеем 
dx MdX cdT dY dZ McdT dX= + = = = +γ γ( ), , , ( ) dy  dz  dt      

Разделив первые три равенства на dt , получим формулы преобразования скоростей 

u
MU c

M U c

V M

M U c

W M

M U c
=

+
+

=
−

+
=

−
+/

,
/

,
/

 v  w

2 21 1
     (8) 

При M→∞  имеем u U v V w W= = =, , . 

При изучении сверхсветовых движений релятивистских материальных частиц с веще-

ственной массой m будем исходить как и в традиционной СТО [11-14], из принципа 

наименьшего действия. Действие для свободной сверхсветовой частицы имеет вид  

S mc ds Ldt
a

b

t

t

= =∫ ∫
1

2

,              (9) 

где L  - функция Лагранжа. При M > 1 имеем ρ = = −ds cdt M2 1 . Тогда 

S mc c M dt
t

t

= −∫ 2 1

1

2

, L mc M= −2 2 1 .         

Импульс частицы определяется как 0Vd/dLp = , ее энергия LVpe 0 −= . Из (9) имеем 

1M

Vm
p

2

0

−
=  , 

1M

mc
E

2

2

−
= .          (10) 

Из уравнений (10) получим систему 





⋅=⋅

⋅−=−

.cpME

,cmcpE 42222

            (11) 
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Из системы (11) следует, что при 1M 2 >  

0cm)1M(E 4222 >⋅=−⋅ , 

т.е. 0m 2 > , откуда получаем, что масса тахиона вещественна. 

Система (11) была получена ранее в [3,4] введением мнимой массы тахиона. В данном слу-

чае оно получается естественным образом, т.е. при наличии вещественной массы тахиона.  

Релятивистское волновое уравнение для частицы с нулевым спином было получено 

Клейном – Гордоном – Фоком. Приведем аналогичное уравнение для случая сверхсветовой 

частицы (тахиона) с вещественной массой m. Исходя из правил соответствия Шредингера 

∇⋅
∂
∂

⋅ -ip  ,
t

iE aa  и первого соотношения (11) имеем следующее уравнение для волновой 

функции ψ  

ψ⋅−ψ∆⋅−=
∂

ψ∂
− 422

2

2

cmc
t

.         

Запишем его в виде 

( ,0)cm 22 =ψ⋅⋅−  = ∆−
∂

∂
⋅

2

2

2 tc

1
.        (12) 

Уравнение (12) рассматривалось ранее, в частности, в работе [5] методом формального 

введения мнимой массы в уравнение Клейна – Гордона – Фока. Волновое уравнение (12) в 

настоящей работе получено для тахиона с вещественной массой m. При данном подходе ав-

томатически снимаются вопросы физической интерпретации мнимой массы, которые возни-

кают во всех работах, посвященных тахионам [3-8].  
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Under general term ‘staton field’ one should comprehend here just the neutral superposition of 

quasi-static gravitating electric potentials φ φ φ+ −= +  with all the real fermions of the real Universe 

to be the sources of those. At the sub-quantum level these fields are supposed to have the super-

rapid (highly superluminal) carriers to be named ‘statons’, so that these so to say ‘preons’ should 

not practically violate the custom long-range (instant) action of static fields. The manifestation of 

that ‘radical’ heuristic conjecture proves to be fairly productive for the present comprehension of 

the gravity nature without any crucial changes in the basic equations of underlying theory.  

In general, the statons should have the almost evanescent (that is negligible for the most usual 

tests of electrodynamics and gravitation, excepting the cosmological applications) but non-zero 

tachyon mass which subsequently proves to be 33 6510 10m eV g− −= = . Next, the scalar field 

thermodynamics – on the one hand, and static (scalar) limit of the Einstein-Maxwell equations – 

from the other, both give rise to the crucial property named ‘antiscalarity’. This means that any 

scalar or pseudo-scalar EMT (energy-momentum tensor, never mind – electrically charged or 

neutral) should enter into the field equations with a sign opposite that of the usual matter, and also 
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this leads inevitably to the negative cosmological Λ -term, if the last to take as a part and parcel of 

the full neutral massive scalar field. 

It was notified at the previous PIRT-conference that the antiscalar approach as a whole has a 

deep geometrical foundation based on introduction from the very beginning of so-called tensor of 

space-time deformations which allows a fixing the main symmetries in the problem under 

consideration. Besides the evident convenience, this method (at first used in a simple case by 

Hawking and Ellis) gives rise to   remarkable possibility of avoidance of any using the Gilbert 

Lagrangian in derivation of the Einstein equations.  A subsequent attachment of the staton 

conception, that is of a well-defined scalar field having ‘statons’ in the capacity of its carriers, leads 

not only to conformity with experiment and not only to independent classical justification of the 

black-hole thermodynamics (under condition of replacement of BH by the more realistic compact 

objects), but also to definite theoretical conclusions of principle.  

So, because of replacement of the vacuum (in a sense of General Relativity) Einstein-Gilbert 

equations by equations with antiscalar staton field, there are no more solutions of type ‘black holes’ 

or ‘gravitational waves, propagating with speed o light’. But what is of special interest, it is 

conclusion that there are no more problems with definition of energy of gravitational field, because 

of such energy is now reduced to the energy of well-defined gravitating antiscalar staton field, only 

by means of which we can perceive the gravity proper. 

Taking this conclusion as a guiding principle it is not difficult to show that the antiscalar 

background can be completely geometrized. Indeed, the usual EMT of scalar field ( )Tµν φ  has a 

standard dimension of energy density when scalar field φ has a dimension of the electric (that is of 

the Coulon-type) potential. From the other hand, we always can replace such an electric-type 

potential φ  by the natural Newtonian-type potential 
N

ϕ  in dimensionless form 2/
N
cϕ ϕ=  (by 

dividing it by 2
c ). Then energy-momentum tensor ( )Tµν φ  transforms just into the geometrical 

complex ( )Tµν ϕ  having the pure geometrical dimension  2[ ]cm−  of the inverse square of length, 

coinciding with dimension of the Ricci tensor and of the (geometrical) Λ -term. So as a result from 

the Einstein equations with antiscalar field the dimensional constant 48 /G cπ is really eliminated. 

This operation does mean the true or full geometrization what at his time Einstein has dreamed 

about.  
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